首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TLRs are involved in innate cell activation by conserved structures expressed by microorganisms. Human T cells express the mRNA encoding most of TLRs. Therefore, we tested whether some TLR ligands may modulate the function of highly purified human CD4+ T lymphocytes. We report that, in the absence of APCs, flagellin (a TLR5 ligand) and R-848 (a TLR7/8 ligand) synergized with suboptimal concentrations of TCR-dependent (anti-CD3 mAb) or -independent stimuli (anti-CD2 mAbs or IL-2) to up-regulate proliferation and IFN-gamma, IL-8, and IL-10 but not IL-4 production by human CD4+ T cells. No effect of poly(I:C) and LPS, ligands for TLR3 and TLR4, respectively, was detected. We also observed that CD4+CD45RO+ memory T cell responses to TLR ligands were more potent than those observed with CD4+CD45RA+ naive T cells. Moreover, among the memory T cells, CCR7- effector cells were more sensitive to TLR ligands than CCR7+ central memory cells. These data demonstrate for the first time a direct effect of TLR5 and TLR7/8 ligands on human T cells, and highlight an innate arm in T cell functions. They also suggest that some components from invading microorganisms may directly stimulate effector memory T cells located in tissues by up-regulating cytokine and chemokine production.  相似文献   

2.
Toll-like receptor ligands directly promote activated CD4+ T cell survival   总被引:15,自引:0,他引:15  
Toll-like receptor (TLR) engagement by pathogen-associated molecular patterns (PAMPs) is an important mechanism for optimal cellular immune responses. APC TLR engagement indirectly enhances activated CD4(+) T cell proliferation, differentiation, and survival by promoting the up-regulation of costimulatory molecules and the secretion of proinflammatory cytokines. However, TLRs are also expressed on CD4(+) T cells, suggesting that PAMPs may also act directly on activated CD4(+) T cells to mediate functional responses. In this study, we show that activated mouse CD4(+) T cells express TLR-3 and TLR-9 but not TLR-2 and TLR-4. Treatment of highly purified activated CD4(+) T cells with the dsRNA synthetic analog poly(I:C) and CpG oligodeoxynucleotides (CpG DNA), respective ligands for TLR-3 and TLR-9, directly enhanced their survival without augmenting proliferation. In contrast, peptidoglycan and LPS, respective ligands for TLR-2 and TLR-4 had no effect. Enhanced survival mediated by either poly(I:C) or CpG DNA required NF-kappaB activation and was associated with Bcl-x(L) up-regulation. However, only CpG DNA, but not poly(I:C)-mediated effects on activated CD4(+) T cells required the TLR/IL-1R domain containing adaptor molecule myeloid differentiation factor 88. Collectively, our results demonstrate that PAMPs can directly promote activated CD4(+) T cell survival, suggesting that TLRs on T cells can directly modulate adaptive immune responses.  相似文献   

3.
TLRs that mediate the recognition of pathogen-associated molecular patterns are widely expressed on/in cells of the innate immune system. However, recent findings demonstrate that certain TLRs are also expressed in conventional TCRalphabeta(+) T cells that are critically involved in the acquired immune system, suggesting that TLR ligands can directly modulate T cell function in addition to various innate immune cells. In this study, we report that in a murine model of chronic colitis induced in RAG-2(-/-) mice by adoptive transfer of CD4(+)CD45RB(high) T cells, both CD4(+)CD45RB(high) donor cells and the expanding colitogenic lamina propria CD4(+)CD44(high) memory cells expresses a wide variety of TLRs along with MyD88, a key adaptor molecule required for signal transduction through TLRs. Although RAG-2(-/-) mice transferred with MyD88(-/-)CD4(+)CD45RB(high) cells developed colitis, the severity was reduced with the delayed kinetics of clinical course, and the expansion of colitogenic CD4(+) T cells was significantly impaired as compared with control mice transferred with MyD88(+/+)CD4(+)CD45RB(high) cells. When RAG-2(-/-) mice were transferred with the same number of MyD88(+/+) (Ly5.1(+)) and MyD88(-/-) (Ly5.2(+)) CD4(+)CD45RB(high) cells, MyD88(-/-)CD4(+) T cells showed significantly lower proliferative responses assessed by in vivo CFSE division assay, and also lower expression of antiapoptotic Bcl-2/Bcl-x(L) molecules and less production of IFN-gamma and IL-17, compared with the paired MyD88(+/+)CD4(+) T cells. Collectively, the MyD88-dependent pathway that controls TLR signaling in T cells may directly promote the proliferation and survival of colitogenic CD4(+) T cells to sustain chronic colitis.  相似文献   

4.
The innate immune system provides the first line of defence against infection. Through a limited number of germline-encoded receptors called pattern recognition receptors (PRRs), innate cells recognize and are activated by highly conserved structures expressed by large group of microorganisms called pathogen-associated molecular patterns (PAMPs). PRRs are involved either in recognition (scavenger receptors, C-type lectins) or in cell activation (Toll-like receptors or TLR, helicases and NOD molecules). TLRs play a pivotal role in cell activation in response to PAMPs. TLR are type I transmembrane proteins characterized by an intracellular Toll/IL 1 receptor homology domain that are expressed by innate immune cells (dendritic cells, macrophages, NK cells), cells of the adaptive immunity (T and B lymphocytes) and non immune cells (epithelial and endothelial cells, fibroblasts). In all the cell types analyzed, TLR agonists, alone or in combination with costimulatory molecules, induce cell activation. The crucial role played by TLR in immune cell activation has been detailed in dendritic cells. A TLR-dependent activation of dendritic cells is required to induce their maturation and migration to regional lymph nodes and to activate na?ve T cells. The ability of different cell types to respond to TLR agonists is related to the pattern of expression of the TLRs and its regulation as well as their intracellular localization. Recent studies suggest that the nature of the endocytic and signaling receptors engaged by PAMPs may determine the nature of the immune response generated against the microbial molecules, highlighting the role of TLRs as molecular interfaces between innate and adaptive immunity. In this review are summarized the main biological properties of the TLR molecules.  相似文献   

5.
In a classical dogma, pathogens are sensed (via recognition of Pathogen Associated Molecular Patterns (PAMPs)) by innate immune cells that in turn activate adaptive immune cells. However, recent data showed that TLRs (Toll Like Receptors), the most characterized class of Pattern Recognition Receptors, are also expressed by adaptive immune B cells. B cells play an important role in protective immunity essentially by differentiating into antibody-secreting cells (ASC). This differentiation requires at least two signals: the recognition of an antigen by the B cell specific receptor (BCR) and a T cell co-stimulatory signal provided mainly by CD154/CD40L acting on CD40. In order to better understand interactions of innate and adaptive B cell stimulatory signals, we evaluated the outcome of combinations of TLRs, BCR and/or CD40 stimulation. For this purpose, mouse spleen B cells were activated with synthetic TLR agonists, recombinant mouse CD40L and agonist anti-BCR antibodies. As expected, TLR agonists induced mouse B cell proliferation and activation or differentiation into ASC. Interestingly, addition of CD40 signal to TLR agonists stimulated either B cell proliferation and activation (TLR3, TLR4, and TLR9) or differentiation into ASC (TLR1/2, TLR2/6, TLR4 and TLR7). Addition of a BCR signal to CD40L and either TLR3 or TLR9 agonists did not induce differentiation into ASC, which could be interpreted as an entrance into the memory pathway. In conclusion, our results suggest that PAMPs synergize with signals from adaptive immunity to regulate B lymphocyte fate during humoral immune response.  相似文献   

6.
Forkhead Box P3(+) (FOXP3(+)) T cells are regulatory cells important for maintaining immune tolerance. While chemokine- and other homing-receptors are important for T cell migration, it has been unclear how they are regulated in FOXP3(+) T cells. We thoroughly investigated, ex vivo and in vitro, the regulation of chemokine receptor expression on human FOXP3(+) T cells in neonatal cord blood, adult peripheral blood, and tonsils. We found that human FOXP3(+) T cells undergo changes in trafficking receptors according to their stages of activation and differentiation. FOXP3(+) T cells are divided into CD45RA(+) (naive type) and CD45RO(+) (memory type) FOXP3(+) T cells in neonatal blood, adult blood, and tonsils. CD45RA(+)FOXP3(+) T cells mainly express lymphoid tissue homing receptors (CD62L, CCR7, and CXCR4), while CD45RO(+)FOXP3(+) T cells highly express both Th1 and Th2-associated trafficking receptors along with the lymphoid tissue homing receptors at reduced frequencies. Up-regulation of Th1/Th2-associated trafficking receptors begins with activation of CD45RA(+)FOXP3(+) T cells and is completed after their differentiation to CD45RO(+) cells. Some chemokine receptors such as CXCR5 and CXCR6 are preferentially expressed by many FOXP3(+) cells at a specific stage (CD69(+)CD45RO(+)) in tonsils. Our in vitro differentiation study demonstrated that CD45RA(+)FOXP3(+) T cells indeed undergo chemokine receptor switch from CD45RA(+) (secondary lymphoid tissue homing) to CD45RO(+) type (lymphoid and nonlymphoid tissue homing). The orderly regulation of trafficking receptors in FOXP3(+) T cells according to stages of differentiation and activation is potentially important for their tissue-specific migration and regulation of immune responses in humans.  相似文献   

7.
We used multiparameter flow cytometry to characterize leukocyte immunophenotypes and cytokines in skin and peripheral blood of patients with erythema migrans (EM). Dermal leukocytes and cytokines were assessed in fluids aspirated from epidermal suction blisters raised over EM lesions and skin of uninfected controls. Compared with corresponding peripheral blood, EM infiltrates were enriched for T cells, monocytes/macrophages, and dendritic cells (DCs), contained lower proportions of neutrophils, and were virtually devoid of B cells. Enhanced expression of CD14 and HLA-DR by lesional neutrophils and macrophages indicated that these innate effector cells were highly activated. Staining for CD45RO and CD27 revealed that lesional T lymphocytes were predominantly Ag-experienced cells; furthermore, a subset of circulating T cells also appeared to be neosensitized. Lesional DC subsets, CD11c(+) (monocytoid) and CD11c(-) (plasmacytoid), expressed activation/maturation surface markers. Patients with multiple EM lesions had greater symptom scores and higher serum levels of IFN-alpha, TNF-alpha, and IL-2 than patients with solitary EM. IL-6 and IFN-gamma were the predominant cytokines in EM lesions; however, greater levels of both mediators were detected in blister fluids from patients with isolated EM. Circulating monocytes displayed significant increases in surface expression of Toll-like receptor (TLR)1 and TLR2, while CD11c(+) DCs showed increased expression of TLR2 and TLR4; lesional macrophages and CD11c(+) and CD11c(-) DCs exhibited increases in expression of all three TLRs. These results demonstrate that Borrelia burgdorferi triggers innate and adaptive responses during early Lyme disease and emphasize the interdependence of these two arms of the immune response in the efforts of the host to contain spirochetal infection.  相似文献   

8.
Abnormal T cell responses to commensal bacteria are involved in the pathogenesis of inflammatory bowel disease. MyD88 is an essential signal transducer for TLRs in response to the microflora. We hypothesized that TLR signaling via MyD88 was important for effector T cell responses in the intestine. TLR expression on murine T cells was examined by flow cytometry. CD4(+)CD45Rb(high) T cells and/or CD4(+)CD45Rb(low)CD25(+) regulatory T cells were isolated and adoptively transferred to RAG1(-/-) mice. Colitis was assessed by changes in body weight and histology score. Cytokine production was assessed by ELISA. In vitro proliferation of T cells was assessed by [(3)H]thymidine assay. In vivo proliferation of T cells was assessed by BrdU and CFSE labeling. CD4(+)CD45Rb(high) T cells expressed TLR2, TLR4, TLR9, and TLR3, and TLR ligands could act as costimulatory molecules. MyD88(-/-) CD4(+) T cells showed decreased proliferation compared with WT CD4(+) T cells both in vivo and in vitro. CD4(+)CD45Rb(high) T cells from MyD88(-/-) mice did not induce wasting disease when transferred into RAG1(-/-) recipients. Lamina propria CD4(+) T cell expression of IL-2 and IL-17 and colonic expression of IL-6 and IL-23 were significantly lower in mice receiving MyD88(-/-) cells than mice receiving WT cells. In vitro, MyD88(-/-) T cells were blunted in their ability to secrete IL-17 but not IFN-gamma. Absence of MyD88 in CD4(+)CD45Rb(high) cells results in defective T cell function, especially Th17 differentiation. These results suggest a role for TLR signaling by T cells in the development of inflammatory bowel disease.  相似文献   

9.
In the present study, the authors compared the interleukin 17 (IL-17 expression of human naive and phenotypically defined memory T cells as well as its regulation by cAMP pathway. Our data showed that IL-17 mRNA was highly expressed in memory human peripheral CD8(+)45RO+T cells and CD4(+)45RO+T cells when peripheral blood mononuclear cells were first stimulated with ionomycin/PMA. IL-17 expression in memory CD8(+)T cells required accessory signals since culture of ionomycin/PMA-activated CD8(+)45RO+T cells alone did not result to IL-17 expression. In contrast, memory CD4(+)T cell population seems to be more independent. IL-17 and interferon gamma(IFN-gamma) mRNA were both inhibited in the presence of PGE2 or the cAMP analogue (dibutyryl-cAMP), while the anti-inflammatory cytokine IL-10 was highly increased. In contrast, naive CD45RA+T cells were unable to express IL-17 whatever the culture conditions. Naive CD4(+)and CD8(+)T cells were sensitive to the PKA regulatory pathway since they represent a significant source of IL-10 when PBMC were first cultured with ionomycin/PMA in the presence of either PGE2 or db-cAMP. The authors showed that naive cells are highly dependent to their microenvironment, since culture of ionomycin/PMA-activated CD45RA+T cells alone did not result in detectable levels of cytokines even in the presence of PGE2. Results also showed that PGE2 induced quite the same levels of intracellular cAMP in naive and memory cells suggesting that these cell populations are equally sensitive to PGE2. However, we suggest that PGE2 may be more efficient in blocking both IL-17 and IFN-gamma expression in already primed memory T cells, rather than in suppressing naive T cells that could represent a significant source of IL-10. Data suggest that PKA activation pathway plays a critical role in the regulation of cytokine profiles and consequently the functional properties of both human naive and memory CD4(+) and CD8(+)T cells during the immune and inflammatory processes.  相似文献   

10.
Froy O 《Cellular microbiology》2005,7(10):1387-1397
The immune system consists of innate and adaptive immune responses. The innate immune system confers non-specific protection against a large number of pathogens, hence, serving as the first line of defence. The innate immune system utilizes Toll-like receptors (TLRs) to recognize and bind pathogen-associated molecular patterns (PAMPs). Binding of PAMPs leads to TLR activation, which, in turn, initiates MAPK- or NF-kappaB-dependent cascades that culminate in a proinflammatory response. This response involves the secretion of cytokines, chemokines and broad-spectrum antibacterial substances, such as defensins. Increased defensin synthesis is also mediated by the activation of receptors other than TLRs, such as NOD2, IL-17R and PAR-2. This review summarizes the recently characterized signalling pathways leading to increased defensin synthesis as well as the pathway by which defensins activate TLRs on immature dendritic and memory T cells. Thus, not only do defensins eliminate pathogens, but they also recruit the adaptive immune system in instances of infection and/or inflammation.  相似文献   

11.
Naturally occurring CD4(+)CD25(+)FOXP3(+) regulatory T cells suppress the activity of pathogenic T cells and prevent development of autoimmune responses. There is growing evidence that TLRs are involved in modulating regulatory T cell (Treg) functions both directly and indirectly. Specifically, TLR2 stimulation has been shown to reduce the suppressive function of Tregs by mechanisms that are incompletely understood. The developmental pathways of Tregs and Th17 cells are considered divergent and mutually inhibitory, and IL-17 secretion has been reported to be associated with reduced Treg function. We hypothesized that TLR2 stimulation may reduce the suppressive function of Tregs by regulating the balance between Treg and Th17 phenotype and function. We examined the effect of different TLR2 ligands on the suppressive functions of Tregs and found that activation of TLR1/2 heterodimers reduces the suppressive activity of CD4(+)CD25(hi)FOXP3(low)CD45RA(+) (naive) and CD4(+)CD25(hi)FOXP3(hi)CD45RA(-) (memory or effector) Treg subpopulations on CD4(+)CD25(-)FOXP3(-)CD45RA(+) responder T cell proliferation while at the same time enhancing the secretion of IL-6 and IL-17, increasing RORC, and decreasing FOXP3 expression. Neutralization of IL-6 or IL-17 abrogated Pam3Cys-mediated reduction of Treg suppressive function. We also found that, in agreement with recent observations in mouse T cells, TLR2 stimulation can promote Th17 differentiation of human T helper precursors. We conclude that TLR2 stimulation, in combination with TCR activation and costimulation, promotes the differentiation of distinct subsets of human naive and memory/effector Tregs into a Th17-like phenotype and their expansion. Such TLR-induced mechanism of regulation of Treg function could enhance microbial clearance and increase the risk of autoimmune reactions.  相似文献   

12.
Using HLA class I-viral epitope tetramers to monitor herpes virus-specific CD8(+) T cell responses in humans, we have shown that a significant fraction of responding cells revert from a CD45RO(+) to a CD45RA(+) state after priming. All tetramer-binding CD45RA(+) cells, regardless of epitope specificity, expressed a phenotype LFA-1(high)CCR7(low) that was stable for at least 10 years in infectious mononucleosis patients and indefinitely in asymptomatic carriers. CD8(+)CD45RA(+)LFA-1(high) cells were not present in cord blood but in adults account for up to 50% of CD8(+)CD45RA(+) cells. These CD45RA(+)LFA-1(high) cells have significantly shorter telomeres than CD45RA(+)LFA-1(low) cells, suggesting that the latter represent a naive population, while the former are memory cells. CD45RA(+) memory cells are a stable population of noncycling cells, but on stimulation they are potent producers of IFN-gamma, while naive CD8(+) cells produce only IL-2. The chemokine receptor profile and migratory potential of CD45RA(+) memory cells is very similar to CD45RO(+) cells but different to naive CD8 cells. In accord with this, CD45RA(+) memory cells were significantly underrepresented in lymph nodes, but account for virtually all CD8(+)CD45RA(+) T cells in peripheral tissues of the same individuals.  相似文献   

13.
Regulatory T cells (Treg) maintain peripheral tolerance and play a critical role in the control of the immune response in infection, tumor defense, organ transplantation and allergy. CD4(+)CD25(high) Treg suppress the proliferation and cytokine production of CD4(+)CD25(-) responder T cells. The suppression requires cell-cell-contact and/or production of inhibitory cytokines like IL-10 or TGF-β. The current knowledge about the regulation of Treg suppressive function is limited. Toll-like receptors (TLR) are widely expressed in the innate immune system. They recognize conserved microbial ligands such as lipopolysaccharide, bacterial lipopeptides or viral and bacterial RNA and DNA. TLR play an essential role in innate immune responses and in the initiation of adaptive immune responses. However, certain TLR are also expressed in T lymphocytes, and the respective ligands can directly modulate T cell function. TLR2, TLR3, TLR5 and TLR9 act as costimulatory receptors to enhance proliferation and/or cytokine production of T-cell receptor-stimulated T lymphocytes. In addition, TLR2, TLR5 and TLR8 modulate the suppressive activity of naturally occurring CD4(+)CD25(high) Treg. The direct responsiveness of T lymphocytes to TLR ligands offers new perspectives for the immunotherapeutic manipulation of T cell responses. In this article we will discuss the regulation of Treg and other T cell subsets by TLR ligands.  相似文献   

14.
Gao Y  Zhang M  Chen L  Hou M  Ji M  Wu G 《Cellular immunology》2012,272(2):242-250
The purpose of this study was to observe the diverse functions of Toll-like receptors (TLRs) in responses to specific schistosome antigens. Bone marrow-derived dendritic cells (BMDCs) from TLR2-deficient (TLR2(-/-)) or TLR4-deficient (TLR4(-/-)) mice were activated with soluble schistosomule antigen (SSA) or soluble egg antigen (SEA). TLR2 mRNA expression was significantly increased in B6 BMDCs following SEA stimulation. TLR2-deficient BMDCs showed enhanced MHCII expression following SSA and SEA stimulation. TLR2-deficient but not TLR4-deficient BMDC failed to produce IL-12p70 and IL-10 in response to schistosome antigens. TLR2-deficient BMDCs induced a stronger CD4(+) T cell proliferative response. IL-4 and IL-10 expression was inhibited in CD4(+) T cells primed with TLR2-deficient BMDCs, while enhanced in TLR4-deficient BMDCs-primed CD4(+) T cells. These results suggest that TLR2 is essential for the establishment of the DC production of IL-12p70 and IL-10.  相似文献   

15.
病原真菌感染与TOLL样受体   总被引:1,自引:0,他引:1  
韩黎  纪蕾  孟玉芬  陈世平   《微生物学通报》2006,33(4):158-162
TOLL样受体(TLR)是参与天然免疫的主要模式识别受体之一,与许多微生物病原体及其产物的病原相关分子模式PAMP结合后通过MyD88依赖性或非依赖性途径启动宿主胞内信号传导途径,引发一系列生物学效应。白色念珠菌表面的特征性糖磷脂甘露聚糖可被TLR2、TLR4识别,诱导前炎性细胞因子的释放及促进中性粒细胞的聚集等来介导宿主的抗真菌免疫反应。烟曲霉则可能利用表型转换(酵母样与菌丝态),通过不同TLRs逃避宿主天然免疫系统的识别。新型隐球菌的多糖荚膜成分葡糖醛氧化甘露聚糖GXM可与TLR2、TLR4、CD14结合,在单核细胞、巨噬细胞对GXM的内化、吞噬中起重要作用,而不是诱导细胞因子的分泌;酿酒酵母胞壁成分酵母多糖则可激活TLR2、TLR6异源二聚体。总之,TLR与真菌配体相互作用的具体机制及其活化后胞内信号传导调控机制的深入研究与分析,对临床真菌病的免疫调节及治疗具有重要意义。  相似文献   

16.
CD8(+) T cells depend on the alphabeta TCR for Ag recognition and function. However, Ag-activated CD8(+) T cells can also express receptors of the innate immune system. In this study, we examined the expression of NK receptors on a population of CD8(+) T cells expressing high levels of CD44 (CD8(+)CD44(high) cells) from normal mice. These cells are distinct from conventional memory CD8(+) T cells and they proliferate and become activated in response to IL 2 via a CD48/CD2-dependent mechanism. Before activation, they express low or undetectable levels of NK receptors but upon activation with IL-2 they expressed significant levels of activating NK receptors including 2B4 and NKG2D. Interestingly, the IL-2-activated cells demonstrate a preference in the killing of syngeneic tumor cells. This killing of syngeneic tumor cells was greatly enhanced by the expression of the NKG2D ligand Rae-1 on the target cell. In contrast to conventional CD8(+) T cells, IL-2-activated CD8(+)CD44(high) cells express DAP12, an adaptor molecule that is normally expressed in activated NK cells. These observations indicate that activated CD8(+)CD44(high) cells express receptors of both the adaptive and innate immune system and may play a unique role in the surveillance of host cells that have been altered by infection or transformation.  相似文献   

17.
Toll样受体(Toll-like receptors, TLRs)在先天免疫系统中广泛表达,可通过促进抗原提呈细胞(antigen presenting cells,APC)共刺激分子的表达从而间接导致T细胞活化。然而研究发现,TLR也可在T细胞中表达,并可在没有APC的情况下直接调节T细胞的代谢与功能。本文综述了TLR信号对不同T细胞亚群代谢和免疫功能的直接调控作用,为T细胞介导的癌症及自身免疫病等疾病的预防和治疗提供了新的思路。  相似文献   

18.
Cutting edge: TLR2 directly triggers Th1 effector functions   总被引:2,自引:0,他引:2  
Toll-like receptors recognize pathogen-associated molecular patterns, activate innate immunity, and consequently modulate adaptive immunity in response to infections. TLRs are also expressed on T cells, and it has been shown that T cell activation is modulated by TLR ligands. However, the functions of TLRs on Th1 and Th2 effector cells and the molecular mechanisms underlying TLR-mediated activation are not fully understood. We analyzed TLR functions and downstream signaling events in both effector T cells. In mouse Th1 cells the stimulation by TLR2 but not by other TLRs directly induced IFN-gamma production, cell proliferation, and cell survival without TCR stimulation, and these effects were greatly enhanced by IL-2 or IL-12 through the enhanced activation of MAPKs. In contrast, no TLR affected the function of effector Th2 cells. These results identify TLR2 as a new specific activator of Th1 cell function and imply the involvement in Th1-mediated responses.  相似文献   

19.
Vgamma9/Vdelta2 T cells comprise a small population of peripheral T cells responding towards the low molecular weight antigen, (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate (HMB-PP). HMB-PP-stimulated Vgamma9/Vdelta2 T cells proliferated, expressed CCL5/RANTES, and upregulated markers like CD16, CD25, CD69, and CD94, in the presence of either IL-15 or IL-21. Vgamma9/Vdelta2 T cells grown in the presence of IL-15 differentiated into an effector/memory population characterized by production of TNF-alpha, expression of CD45RO and CCR5, and lack of CD62L, CD81, and CCR7. In contrast, Vgamma9/Vdelta2 T cells grown with IL-21 differentiated into putative central memory CD45RO(+) T cells that did not produce TNF-alpha, IFN-gamma, or IL-4, and maintained expression of CD62L, CD81, and CCR7.  相似文献   

20.
A human memory T cell subset with stem cell-like properties   总被引:1,自引:0,他引:1  
Immunological memory is thought to depend on a stem cell-like, self-renewing population of lymphocytes capable of differentiating into effector cells in response to antigen re-exposure. Here we describe a long-lived human memory T cell population that has an enhanced capacity for self-renewal and a multipotent ability to derive central memory, effector memory and effector T cells. These cells, specific to multiple viral and self-tumor antigens, were found within a CD45RO(-), CCR7(+), CD45RA(+), CD62L(+), CD27(+), CD28(+) and IL-7Rα(+) T cell compartment characteristic of naive T cells. However, they expressed large amounts of CD95, IL-2Rβ, CXCR3, and LFA-1, and showed numerous functional attributes distinctive of memory cells. Compared with known memory populations, these lymphocytes had increased proliferative capacity and more efficiently reconstituted immunodeficient hosts, and they mediated superior antitumor responses in a humanized mouse model. The identification of a human stem cell-like memory T cell population is of direct relevance to the design of vaccines and T cell therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号