首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
Venoms of Colubridae snakes are a rich source of novel compounds, which may have applications in medicine and biochemistry. In the present study, we describe the purification and characterization of a metalloproteinase (patagonfibrase), the first protein to be isolated from Philodryas patagoniensis (Colubridae) snake venom. Patagonfibrase is a single-chain protein, showing a molecular mass of 53,224 Da and an acidic isoelectric point (5.8). It hydrolyzed selectively the Aα-chain of fibrinogen and when incubated with fibrinogen or plasma, the thrombin clotting time was prolonged. Prominent hemorrhage developed in mouse skin after intradermal injection of patagonfibrase. When administered into mouse gastrocnemius muscle, it induced local hemorrhage and necrosis, and systemic bleeding in lungs. Patagonfibrase showed proteolytic activity toward azocasein, which was enhanced by Ca2+ and inhibited by Zn2+, cysteine, dithiothreitol and Na2EDTA. Patagonfibrase impaired platelet aggregation induced by collagen and ADP. Thus, patagonfibrase may play a key role in the pathogenesis of disturbances that occur in P. patagoniensis envenomation, and may be used as a biological tool to explore many facets of hemostasis.  相似文献   

2.
Snake Venom Metalloproteinases (SVMPs) are the most abundant components present in Viperidae venom. They are important in the induction of systemic alterations and local tissue damage after envenomation. In the present study, a metalloproteinase named BpMPI was isolated from Bothropoides pauloensis snake venom and its biochemical and enzymatic characteristics were determined. BpMPI was purified in two chromatography steps on ion exchange CM-Sepharose Fast flow and Sephacryl S-300. This protease was homogeneous on SDS-PAGE and showed a single chain polypeptide of 20 kDa under non reducing conditions. The partial amino acid sequence of the enzyme showed high similarity with other SVMPs enzymes from snake venoms. BpMPI showed proteolytic activity upon azocasein and bovine fibrinogen and was inhibited by EDTA, 1,10 phenanthroline and β-mercaptoethanol. Moreover, this enzyme showed stability at neutral and alkaline pH and it was inactivated at high temperatures. BpMPI was able to hydrolyze glandular and tissue kallikrein substrates, but was unable to act upon factor Xa and plasmin substrates. The enzyme did not induce local hemorrhage in the dorsal region of mice even at high doses. Taken together, our data showed that BpMP-I is in fact a fibrinogenolytic metalloproteinase and a non hemorrhagic enzyme.  相似文献   

3.
In investigations aimed at characterizing snake venom clot-dissolving enzymes, we have purified a fibrinolytic proteinase from the venom of Bothrops leucurus (white-tailed jararaca). The proteinase was purified to homogeneity by a combination of molecular sieve chromatography on Sephacryl S-200 and ion-exchange chromatography on CM Sepharose. The enzyme called leucurolysin-a (leuc-a), is a 23 kDa metalloendopeptidase since it is inhibited by EDTA. PMSF, a specific serine proteinase inhibitor had no effect on leuc-a activity. The amino acid sequence was established by Edman degradation of overlapping peptides generated by a variety of selective cleavage procedures. Leuc-a is related in amino acid sequence to reprolysins. The protein is composed of 200 amino acid residues in a single polypeptide chain, possessing a blocked NH2-terminus and containing no carbohydrate. The proteinase showed proteolytic activity on dimethylcasein and on fibrin (specific activity=21.6 units/mg and 17.5 units/microg, respectively; crude venom=8.0 units/mg and 9.5 units/microg). Leuc-a degrades fibrin and fibrinogen by hydrolysis of the alpha chains. Moreover, the enzyme was capable of cleaving plasma fibronectin but not the basement membrane protein laminin. Leuc-a cleaved the Ala14-Leu15 and Tyr16-Leu17 bonds in oxidized insulin B chain. The pH optimum of the proteolysis of dimethylcasein by leuc-a was about pH 7.0. Antibody raised in rabbit against the purified enzyme reacted with leuc-a and with the crude venom of B. leucurus. In vitro studies revealed that leuc-a dissolves clots made either from purified fibrinogen or from whole blood, and unlike some other venom fibrinolytic metallopeptidases, leuc-a is devoid of hemorrhagic activity when injected (up to 100 microg) subcutaneously into mice.  相似文献   

4.
目的研究滴水珠与半夏生药及其提取物抗五步蛇毒的作用。方法将ICR小鼠随机分为半夏生药组、半夏醇提物组、滴水珠生药组、滴水珠醇提物组、空白对照组、阳性对照组及模型组,各组小鼠均灌胃给药7天,并观察各给药组小鼠的体重变化情况;在末次给药1h后于小鼠腹腔注射五步蛇毒,观察各组小鼠的中毒表现,并统计各组小鼠的死亡率,比较各组小鼠的肝脏指数、脾脏指数及胸腺指数,并对各组小鼠血浆纤维蛋白原(FIB)、血浆凝血酶原时间(PT)、凝血酶时间(TT)、活化部分凝血酶时间(APTT)以及血小板(PLT)、红细胞(RBC)和白细胞(WBC)计数进行比较。结果半夏和滴水珠醇提物、半夏和滴水珠生药均可降低五步蛇毒中毒小鼠的死亡率,对五步蛇毒引起的小鼠PT、TT、APTT上升和FIB下降具有显著的抑制作用,与模型组相比P〈0.05;并可影响五步蛇毒中毒小鼠外周血血小板(PLT)、红细胞(RBC)和白细胞(WBC)计数,与模型组相比P〈0.05。但滴水珠和半夏生药可引起小鼠体重下降,并影响肝脏、胸腺和脾脏指数,与空白对照组相比P〈0.05。结论半夏和滴水珠醇提物及半夏和滴水珠生药均具有一定的抗五步蛇毒作用,乙醇提取能降低半夏和滴水珠的毒性。  相似文献   

5.
In the present study, an acidic PLA(2), designated Bl-PLA(2), was isolated from Bothrops leucurus snake venom through two chromatographic steps: ion-exchange on CM-Sepharose and hydrophobic chromatography on Phenyl-Sepharose. Bl-PLA(2) was homogeneous on SDS-PAGE and when submitted to 2D electrophoresis the molecular mass was 15,000Da and pI was 5.4. Its N-terminal sequence revealed a high homology with other Asp49 acidic PLA(2)s from snake venoms. Its specific activity was 159.9U/mg and the indirect hemolytic activity was also higher than that of the crude venom. Bl-PLA(2) induced low myotoxic and edema activities as compared to those of the crude venom. Moreover, the enzyme was able to induce increments in IL-12p40, TNF-α, IL-1β and IL-6 levels and no variation of IL-8 and IL-10 in human PBMC stimulated in vitro, suggesting that Bl-PLA(2) induces proinflammatory cytokine production by human mononuclear cells. Bothrops leucurus venom is still not extensively explored and knowledge of its components will contribute for a better understanding of its action mechanism.  相似文献   

6.
A novel prothrombin activator, Mikarin, has been isolated from Micropechis ikaheka venom. It is a single polypeptide chain metalloproteinase with the apparent molecular weight of 47kDa. Mikarin exhibits Ca(2+)-independent prothrombin activation, but no effects on other blood coagulation factors, such as factor X and fibrinogen. Mikarin is the first member of group I prothrombin activators from elapid venom. Like other high-molecular-weight snake venom proteinases, it has three structural domains, metalloproteinase and disintegrin-like and Cys-rich domains, and belongs to the P-III class of snake venom metalloproteinases. The N-terminal of Mikarin exhibits 76% sequence identity with Cobrin, a metalloproteinase identified from Naja naja venom, but very lower identities were found when compared with those from viperid and crotalid venom. In addition, the presence of disintegrin-like and Cys-rich domains in snake venom metalloproteinases with diverse biological activities suggests that these domains may be important for their function.  相似文献   

7.
Snake venoms of the Viperidae family contain a numberof proteins that cause hemostatic disturbances. Enveno-mation of this family is characterized by hemorrhage,edema, local tissue damage, myonecrosis, fibrinolytic andkinin releasing activities [1]. In southeastern Brazil, theviper Bothrops jararaca (Viperidae) is responsible for 90%of snakebite accidents [2]. The enzymes that have proteolytic, coagulate andhemorraghic activities can activate or interfere withthe process of coagulation, and…  相似文献   

8.
9.
A dermonecrotic metalloproteinase (CcD‐II) was isolated from C. cerastes venom. Venom fractionation was performed using three chromatographic steps (molecular exclusion on Sephadex G‐75, ion‐exchange on DEAE‐Sephadex A‐50, and reversed‐phase high‐performance liquid chromatography on C8 column). CcD‐II presented an apparent molecular mass of 39.9 kDa and displayed a dermonecrotic activity with a minimal necrotic dose of 0.2 mg/kg body weight. CcD‐II showed proteolytic ability on casein chains and on α and β fibrinogen chains that was inhibited by ethylenediamine tetraacetic acid and 1,10‐phenanthroline while remained unaffected by phenylmethylsulphonyl fluoride and heparin. CcD‐II displayed gelatinase activity and degraded extracellular matrix compounds (type‐IV collagen and laminin). These results correlated with histopathological analysis showing a complete disorganization of collagenous skin fibers. These data suggested that CcD‐II belongs to P‐II class of snake venom metalloproteinase. The characterization of venom compounds involved in tissue damage may contribute in the development of new therapeutic strategies in envenomation.  相似文献   

10.
A prothrombin activator, named 'basparin A,' was isolated from the venom of the crotaline snake Bothrops asper, the species responsible for the majority of snakebite cases in Central America. It is an acidic (pI 5.4), 70kDa, single chain P-III metalloproteinase comprising, in addition to the metalloproteinase domain, disintegrin-like, and high-cysteine domains. Basparin A is a glycoprotein displaying immunological cross-reactivity with BaH1, a P-III hemorrhagic metalloproteinase isolated from the same venom. It activates prothrombin through the formation of meizothrombin, without requiring additional cofactors; it is, therefore, a class A snake venom prothrombin activator. In contrast with most venom metalloproteinases, it does not degrade components of the extracellular matrix. Apart from its clotting activity, basparin A inhibits collagen-dependent platelet aggregation in vitro, an effect that does not depend on proteolytic activity. Clotting activity on human plasma is not abrogated by the plasma proteinase inhibitors alpha(2) macroglobulin and murinoglobulin, whereas activity is completely inhibited by Costa Rican polyvalent (Crotalinae) anti-venom. Basparin A does not induce local tissue alterations, such as hemorrhage, myonecrosis, and edema, in mice. Moreover, it does not induce systemic hemorrhage, thrombocytopenia nor prolongation of the bleeding time following intravenous administration. At low doses, the only observed effect induced by basparin A, when injected intravenously or intramuscularly into mice, is defibrin(ogen)ation. At higher doses, intravenous administration resulted in sudden death due to numerous occluding thrombi in pulmonary vessels. Basparin A is likely to play an important role in the coagulopathy associated with B. asper envenoming.  相似文献   

11.
通过蛋白层析从中华眼镜蛇毒中分离纯化出一个新的纤维蛋白原水解酶atrase A. Atrase A是一个分子量为64.6 kD,等电点为pH 9.6和中性糖含量为4.16%的碱性单链糖蛋白.它具有弱的纤维蛋白原α链水解活性.该活性能被金属螯合剂EDTA, EGTA,1,10 phenanthroline和还原剂DTT完全抑制,而PMSF只能部分抑制该活性,大豆胰蛋白酶抑制剂对其没有影响, 表明atrase A属于金属蛋白酶. Atrase A具有水肿活性和金黄色葡萄球菌抑制活性.它对A549 和K562 细胞没有细胞毒性,但能使贴壁生长的A549细胞解离悬浮. Atrase A没有纤维蛋白、azocasein 、BAEE水解活性,对ADP、胶原诱导的血小板聚集没有明确的抑制作用. 经小鼠皮下注射后没有发现其有出血毒活性.  相似文献   

12.
宁永成  王月英 《蛇志》1993,5(1):4-6
每种蛇毒含有多种蛋白质组分,每种蛋白质分子有其自已的一级结构和相应的氨基酸残基的组成。因此蛇毒的氢谱是其所有组成的谱图的加和,对不同产地和种属的20多种冷冻干燥的蛇毒进行了测定,结果每种蛇毒均显示其特征的核磁共振氢谱,提示各种蛇毒的氨基酸残基组成是不同的。  相似文献   

13.
A thrombin-like enzyme (termed albolabrase) was isolated in purified form from the venom of Cryptelytrops albolabris (white-lipped tree viper) using high performance anion ion exchange and gel filtration chromatography. The molecular mass of albolabrase was 33.7 kDa as determined by SDS-PAGE and 35.8 kDa as determined by Superose gel filtration chromatography. The N-terminal sequence was determined to be VVGGDECNINE which is homologous to many snake venom thrombin-like enzymes. Albolabrase exhibits both arginine ester hydrolase and arginine amidase activities and the enzyme is fastidious towards tripeptide chromogenic anilide substrates. The fibrinogen clotting activity was optimum at 3 mg/mL bovine fibrinogen, and showed distinct species differences in the following decreasing order: bovine fibrinogen > dog fibrinogen ≈ human fibrinogen > goat fibrinogen. The enzyme failed to clot both rabbit and cat fibrinogens. Reversed-phase HPLC analysis on the breakdown products of fibrinogenolytic action of albolabrase indicated that the enzyme belongs to the AB class of snake venom thrombin-like enzyme. In the indirect ELISA, IgG anti-albolabrase reacted extensively with most crotalid venoms, except with Tropidolaemus wagleri and Calloselasma rhodostoma venoms. The double sandwich ELISA, however, showed that anti-albolabrase reacted strongly only with venoms from the Trimeresurus complex, and that the results support the proposed new taxonomy changes concerning the Trimeresurus complex.  相似文献   

14.
The processes that drive the evolution of snake venom variability, particularly the role of diet, have been a topic of intense recent research interest. Here, we test whether extensive variation in venom composition in the medically important viper genus Echis is associated with shifts in diet. Examination of stomach and hindgut contents revealed extreme variation between the major clades of Echis in the proportion of arthropod prey consumed. The toxicity (median lethal dose, LD50) of representative Echis venoms to a natural scorpion prey species was found to be strongly associated with the degree of arthropod feeding. Mapping the results onto a novel Echis phylogeny generated from nuclear and mitochondrial sequence data revealed two independent instances of coevolution of venom toxicity and diet. Unlike venom LD50, the speed with which venoms incapacitated and killed scorpions was not associated with the degree of arthropod feeding. The prey-specific venom toxicity of arthropod-feeding Echis may thus be adaptive primarily by reducing venom expenditure. Overall, our results provide strong evidence that variation in snake venom composition results from adaptive evolution driven by natural selection for different diets, and underscores the need for a multi-faceted, integrative approach to the study of the causes of venom evolution.  相似文献   

15.
16.
Leucurolysin-B (leuc-B) is an hemorrhagic metalloproteinase found in the venom of Bothrops leucurus (white-tailed-jararaca) snake. By means of liquid chromatography consisting of gel filtration on Sephracryl S-200, S-300 and ion-exchange on DEAE Sepharose, leuc-B was purified to homogeneity. The proteinase has an apparent molecular mass of 55 kDa as revealed by the reduced SDS-PAGE, and represents approximately 1.2% of the total protein in B. leucurus venom. The partial amino acid sequence of leuc-B was determined by automated Edman sequencing of peptides derived from digests of the S-reduced and alkylated protein with trypsin. Leuc-B exhibits the characteristic motif of metalloproteinases, HEXXHXXGXXH and a methionine-containing turn of similar conformation (“Met-turn”), which forms a hydrophobic basis for the zinc ions and the three histidine residues involved as ligands. Leuc-B has been characterized as a P-III metalloproteinase and possesses a multidomain structure including a metalloproteinase, a disintegrin-like (ECD sequence instead of the typical RGD motif) and a cysteine-rich C-terminal domain. Leuc-B contains three potential sites of N-glycosylation. The enzyme only cleaves the Ala14-Leu15 peptide bond of the oxidized insulin B-chain and preferentially hydrolyzes the Aα-chain of fibrinogen and the α-chain of fibrin. Its proteolytic activity was completely inhibited by metal chelating agents but not by other typical proteinase inhibitors. In addition, its enzymatic activity was stimulated by the divalent cations Ca2+ and Mg2+ but inhibited by Zn2+ and Cu2+. The catalytic activity of leuc-B on extracellular matrix proteins could readily lead to loss of capillary integrity resulting in hemorrhage occurring at those sites (MHD = 30 ng in rabbit), with alterations in platelet function. In summary, here we report the isolation and the structure-function relationship of a P-III snake venom metalloproteinase.  相似文献   

17.
Girish KS  Kemparaju K 《Life sciences》2006,78(13):1433-1440
Hyaluronidase is present virtually in all snake venoms and has been known as a "spreading factor." The enzyme damages the extracellular matrix at the site of the bite, leading to severe morbidity. In this study, the benefits of inhibiting the hyaluronidase activity of Indian cobra (Naja naja) venom have been investigated. Anti-NNH1 and aristolochic acid both inhibited the in vitro activity of the purified hyaluronidase, (NNH1) and the hyaluronidase activity of whole venom in a dose-dependent manner. Both anti-NNH1 and aristolochic acid abolished the degradation of hyaluronan in human skin tissue sections by NNH1 and by whole venom. Aristolochic acid quenched the fluorescent emission of NNH1. A non-competitive mechanism of NNH1 inhibition was observed with aristolochic acid. NNH1 potentiates the toxicity of Daboia russellii VRV-PL-VIII myotoxin and hemorrhagic complex-I. However, the potentiation of toxicity was inhibited dose-dependently by anti-NNH1 and aristolochic acid. Further, mice injected with whole venom which had been preincubated with anti-NNH1/aristolochic acid, showed more than a two-fold increase in survival time, compared to mice injected with venom alone. A more moderate increase in survival time was observed when mice were injected with anti-NNH1/aristolochic acid 10 min after whole venom injection. This study illustrates the significance of venom hyaluronidase in the pathophysiology of snake venom poisoning and the therapeutic value of its inhibition.  相似文献   

18.
High molecular mass kininogen (HK) purified from Bothrops jararaca (Bj) plasma was tested on activities of the Bj venom in vivo and in vitro. Results showed that, when incubated with BjHK, the Bj venom presented inhibition on hemorrhagic, edema forming, myotoxic, and coagulant activities. It is well known that metalloproteinases are directly or indirectly involved in these activities. Similarly, human HK inhibits the hemorrhagic effect of the Bj venom as well as hemorrhagic and enzymatic effects of jararhagin, a hemorrhagic metalloproteinase isolated from Bj venom. Complex between HK and jararhagin was not detected by gel filtration. Nevertheless, the inhibitory effect of the hemorrhagic activity of the venom was only partial when HK was pre-incubated with 0.4mM ZnCl(2) or with 0.45mM CaCl(2). These data suggest that the inhibitory effect depends, at least partially, on the competition for ions between kininogen and metalloproteinases of the venom.  相似文献   

19.
The haemorrhagin AaH III isolated from the snake venom ofAgkistrodon acutus is one of the few alkaline ones in snake venoms. Its crystals belong to space group P212121 witha = 9. 573 4 nm,b = 4. 996 7 nm andc = 4.728 8 nm. Its crystal structure was determined by the molecular replacement method according to the model of metalloproteinase Adamalysin II from eastern rattlesnake venom. The AaH III structure has been refined by PROLSQ. The finalR factor was 0.254 and the RMS deviations of bond lengths and angles were 0.001 8 nm and 1.5°. The structure comparison suggested that AaH III has a similar structure to other snake venom zinc-metalloproteinases. They all belong to matrix metalloproteinases super-family. Project supported by the Chinese Academy of Sciences, State Key Laboratory of Biomacromolecules and State Education Commission of China.  相似文献   

20.
Metalloproteinases (MPs) are Zn(+)-dependent endoproteolytic enzymes, abundant in crotalid and viperid snake venoms. Most snake venom metalloproteinases (svMPs) are active on extracellular matrix components and this effect is thought to result in bleeding as a consequence of the basement membrane disruption in capillaries. Jararhagin and ACLH are hemorrhagic svMPs from Bothrops jararaca and Agkistrodon contortrix laticinctus venom, respectively. Both enzymes demonstrate proteolytic activity on fibrinogen and fibronectin and jararhagin inhibits collagen-induced platelet aggregation in vitro. This work describes the expression, purification and successful refolding of the recombinant ACLH zymogen (rPRO-ACLH) as well as the catalytic domain of jararhagin (rCDJARA). The heterologous proteins were produced in E. coli, an in vivo expression system that does not make post-translational modifications. The recombinant refolded proteins did not show any hemorrhagic activity in mice skin, as well as the native deglycosylated jararhagin and ACLH. However, they preserved their proteolytic activity on fibrinogen and fibronectin. It seems that the hemorrhagic properties of these hemorrhagins are dependent on post-translational modifications, whereas their proteolytic activity is not dependent on such modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号