首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
Zhang L  Wei LJ 《Life sciences》2007,80(13):1189-1197
ACTX-8 is a protein isolated from Agkistrodon acutus snake venom in our laboratory. It demonstrates cytotoxic activity on various carcinoma cell lines in vitro. However, the mechanism by which ACTX-8 inhibits cell proliferation remains poorly understood. In this study the influence of ACTX-8 on the activation of apoptotic pathway in Hela cells was investigated. We demonstrated that cell death induced by ACTX-8 was concentration- and time-dependent. Apoptotic changes such as phosphatidyl serine externalization and DNA fragmentation were detected in ACTX-8-treated cells. Caspase activation and reactive oxygen species (ROS) production were involved in ACTX-8-induced apoptosis, but pan caspase inhibitor, z-VAD-fmk, could not inhibit cell death induced by ACTX-8 completely, which proved the existence of another pathway for ACTX-8-induced cell death. We found cytochrome c release into cytosol and mitochondrial membrane potential (MMP) dissipation in ACTX-8-treated cells, which indicated that mitochondrial pathway played a role in ACTX-8-induced cell apoptosis. The ratio of expression levels of pro- and anti-apoptotic Bcl-2 family members was not changed by ACTX-8 treatment. However Bad and Bax were translocated from cytosol into mitochondria, and the coimmunoprecipitation result indicated that in mitochondria Bak and Bcl-xL dissociation was followed by the binding of Bad and Bcl-xL. Taken together, the study indicated mitochondrial pathway played an important role in the ACTX-8-induced apoptosis, which was regulated by Bcl-2 family members.  相似文献   

2.
Previous studies showed that exposure to Vibrio vulnificus cytolysin (VVC) caused characteristic morphologic changes and dysfunction of vascular structures in lung. VVC showed cytotoxicity for mammalian cells in culture and acted as a vascular permeability factor. In this study, the underlying mechanisms of VVC-induced cytotoxicity was investigated on ECV304 cell, a human vascular endothelial cell line. When cells were exposed to 0.4 hemolytic units (HU) of VVC, consecutive apoptotic events were observed; the elevation of superoxide anion (O (-.)(2)), the release of cytochrome c, the activation of caspase-3, the cleavage of poly(ADP-ribose) polymerase, and the DNA fragmentation. The pretreatment with 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), O(-.) 2) scavenger, completely abolished O(-.)(2) levels and downstream apoptotic events. Moreover, pretreatment with cyclosporin A (CsA), a mitochondrial permeability transition inhibitor, was capable of attenuating O(-.)(2)-mediated cytochrome c release and caspase-3 activation, and consequent apoptosis. Apoptosis, as demonstrated by oligonucleosomal DNA fragmentation and fluorescence microscopy, was induced 24 h after VVC treatment, which was also prevented by caspase-3 inhibitor, Ac-DEVD-CHO. Caspase-1 inhibitor, Ac-YVAD-CHO, did not protect ECV 304 cells from apoptosis. These results suggest a scenario where VVC-induced apoptosis is triggered by the generation of O(-.)(2), release of cytochrome c from mitochondria, activation of caspase-3, degradation of poly(ADP-ribose) polymerase, and DNA fragmentation. The induction of apoptosis in endothelial cells by VVC may provide a pivotal mechanism for understanding the pathophysiology of septicemia.  相似文献   

3.
L-Canavanine, a natural L-arginine analog, is known to possess cytotoxicity to tumor cells in culture and experimental tumors in vivo. In this study, we first show that apoptotic cell death is associated with antitumor activity of L-canavanine against human acute leukemia Jurkat T cells. When Jurkat T cells were treated with 1.25-5.0mM L-canavanine for 36 h, apoptotic cell death accompanying several biochemical events such as caspase-3 activation, degradation of poly(ADP-ribose) polymerase (PARP), and apoptotic DNA fragmentation was induced in a dose-dependent manner; however, cytochrome c release from mitochondria was not detected. Under these conditions, the expression of Bcl-2 and its functional homolog Bcl-xL was markedly upregulated. The L-canavanine-induced caspase-3 activation, degradation of PARP, and apoptotic DNA fragmentation were suppressed by ectopic expression of Bcl-2 or Bcl-xL, both of which are known to play roles as anti-apoptotic regulators. These results demonstrate that the cytotoxic effect of L-canavanine on Jurkat T cells is attributable to the induced apoptosis and that L-canavanine-induced apoptosis is mediated by a cytochrome c-independent caspase-3 activation pathway that can be interrupted by Bcl-2 or Bcl-xL.  相似文献   

4.
Cardiotoxin III (CTX III), a basic polypeptide with 60 amino acid residues isolated from Naja naja atra venom, has been reported to have anticancer activity. The molecular effects of CTX III on HL-60 cells were dissected in the present study. We found that the antiproliferative action of CTX III on HL-60 cells was mediated through apoptosis, as characterized by an increase of sub G1 population, DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage. Upregulation of Bax, downregulation of Bcl-2, the release of mitochondrial cytochrome c to cytosol and the activations of capase-9 and -3 were noted, while CTX III had no appreciable effect on the levels of Bcl-X(L) and Bad proteins. Moreover, c-Jun N-terminal kinase (JNK) was activated shortly after CTX III treatment in HL-60 cells. Consistently, the SP600125 compound, an anthrapyrazolone inhibitor of JNK, suppressed apoptosis induced by CTX III. As expected, this JNK inhibitor also attenuated the modulation of Bax and Bcl-2, as well as the cytosolic appearance of cytochrome c and the activation of caspase-3 and caspase-9 that induced by CTX III. These findings suggest that CTX III can induce apoptosis in HL-60 cells via the mitochondrial caspase cascade and the activation of JNK is critical for the initiation of the apoptotic death of HL-60 cells.  相似文献   

5.
6.
Apoptosis was induced in human glioma cell lines by exposure to 100 nM calphostin C, a specific inhibitor of protein kinase C. Calphostin C-induced apoptosis was associated with synchronous down-regulation of Bcl-2 and Bcl-xL as well as activation of caspase-3 but not caspase-1. The exposure to calphostin C led to activation of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK) and p38 kinase and concurrent inhibition of extracellular signal-regulated kinase (ERK). Upstream of ERK, Shc was shown to be activated, but its downstream Raf1 and ERK were inhibited. The pretreatment with acetyl-Tyr-Val-Ala-Asp-aldehyde, a relatively selective inhibitor of caspase-3, or benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD.fmk), a broad spectrum caspase inhibitor, similarly inhibited calphostin C-induced activation of SAPK/JNK and p38 kinase as well as apoptotic nuclear damages (chromatin condensation and DNA fragmentation) and cell shrinkage, suggesting that caspase-3 functions upstream of SAPK/JNK and p38 kinase, but did not block calphostin C-induced surface blebbing and cell death. On the other hand, the inhibition of SAPK/JNK by transfection of dominant negative SAPK/JNK and that of p38 kinase by SB203580 induced similar effects on the calphostin C-induced apoptotic phenotypes and cell death as did z-VAD.fmk and acetyl-Tyr-Val-Ala-Asp-aldehyde, but the calphostin C-induced PARP cleavage was not changed, suggesting that SAPK/JNK and p38 kinase are involved in the DNA fragmentation pathway downstream of caspase-3. The present findings suggest, therefore, that the activation of SAPK/JNK and p38 kinase is dispensable for calphostin C-mediated and z-VAD.fmk-resistant cell death.  相似文献   

7.
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) belongs to the Tumor necrosis factor (TNF) family of death-inducing ligands, and signaling downstream of TRAIL ligation to its receptor(s) remains to be fully elucidated. Components of the death-inducing signaling complex (DISC) and TRAIL signaling downstream of receptor activation were examined in TRAIL - sensitive and -resistant models of human rhabdomyosarcoma (RMS). TRAIL ligation induced DISC formation in TRAIL-sensitive (RD, Rh18, Rh30) and TRAIL-resistant RMS (Rh28, Rh36, Rh41), with recruitment of FADD and procaspase-8. In RD cells, overexpression of dominant-negative FADD (DNFADD) completely abolished TRAIL-induced cell death in contrast to dominant-negative caspase- 8 (DNC8), which only partially inhibited TRAIL-induced apoptosis, growth inhibition, or loss in clonogenic survival. DNC8 did not inhibit the cleavage of Bid or the activation of Bax. Overexpression of Bcl-2 or Bcl-xL inhibited TRAIL-induced apoptosis, growth inhibition, and loss in clonogenic survival. Bcl-2 and Bcl-xL, but not DNC8, inhibited TRAIL-induced Bax activation. Bcl-xL did not inhibit the early activation of caspase-8 (<4 h) but inhibited cleavage of Bid, suggesting that Bid is cleaved downstream of the mitochondria, independent of caspase-8. Exogenous addition of sphingosine also induced activation of Bax via a caspase-8-and Bid-independent mechanism. Further, inhibition of sphingosine kinase completely protected cells from TRAIL-induced apoptosis. Data demonstrate that in RMS cells, the TRAIL signaling pathway circumvents caspase-8 activation of Bid upstream of the mitochondria and that TRAIL acts at the level of the mitochondria via a mechanism that may involve components of the sphingomyelin cycle.  相似文献   

8.
Liu Y  Pu Y  Zhang X 《Journal of virology》2006,80(1):395-403
A previous study demonstrated that infection of rat oligodendrocytes by mouse hepatitis virus (MHV) resulted in apoptosis, which is caspase dependent (Y. Liu, Y. Cai, and X. Zhang, J. Virol. 77:11952-11963, 2003). Here we determined the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis. We found that caspase-9 activity was 12-fold higher in virus-infected cells than in mock-infected cells at 24 h postinfection (p.i.). Pretreatment of cells with a caspase-9 inhibitor completely blocked caspase-9 activation and partially inhibited the apoptosis mediated by MHV infection. Analyses of cytochrome c release further revealed an activation of the mitochondrial apoptotic pathway. Stable overexpression of the two antiapoptotic proteins Bcl-2 and Bcl-xL significantly, though only partially, blocked apoptosis, suggesting that activation of the mitochondrial pathway is partially responsible for the apoptosis. To identify upstream signals, we determined caspase-8 activity, cleavage of Bid, and expression of Bax and Bad by Western blotting. We found a drastic increase in caspase-8 activity and cleavage of Bid at 24 h p.i. in virus-infected cells, suggesting that Bid may serve as a messenger to relay the signals from caspase-8 to mitochondria. However, treatment with a caspase-8 inhibitor only slightly blocked cytochrome c release from the mitochondria. Furthermore, we found that Bax but not Bad was significantly increased at 12 h p.i. in cells infected with both live and UV-inactivated viruses and that Bax activation was partially blocked by treatment with the caspase-8 inhibitor. These results thus establish the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis.  相似文献   

9.
We previously showed (Gastroenterology 123: 206-216, 2002) that lysophosphatidic acid (LPA) protects and rescues rat intestinal epithelial cells (IEC-6) from apoptosis. Here, we provide evidence for the LPA-elicited inhibition of the mitochondrial apoptotic pathway leading to attenuation of caspase-3 activation. Pretreatment of IEC-6 cells with LPA inhibited campothecin-induced caspase-9 and caspase-3 activation and DNA fragmentation. A caspase-9 inhibitor peptide mimicked the LPA-elicited antiapoptotic activity. LPA elicited ERK1/ERK2 and PKB/Akt phosphorylation. The LPA-elicited antiapoptotic activity and inhibition of caspase-9 activity were abrogated by pertussis toxin, PD 98059, wortmannin, and LY 294002. LPA reduced cytochrome c release from mitochondria and prevented activation of caspase-9. LPA prevented translocation of Bax from cytosol to mitochondria and increased the expression of the antiapoptotic Bcl-2 mRNA and protein. LPA had no effect on Bcl-xl, Bad, and Bak mRNA or protein expression. These data indicate that LPA protects IEC-6 cells from camptothecin-induced apoptosis through G(i)-coupled inhibition of caspase-3 activation mediated by the attenuation of caspase-9 activation due to diminished cytochrome c release, involving upregulation of Bcl-2 protein expression and prevention of Bax translocation.  相似文献   

10.
Advanced glycation end products (AGEs) form by a non-enzymatic reaction between reducing sugars and biological proteins, which play an important role in the pathogenesis of atherosclerosis. In this study, we assessed AGEs effects on human umbilical vein endothelial cells (HUVECs) growth, proliferation and apoptosis. Additionally, we investigated whether hepatocyte growth factor (HGF), an anti-apoptotic factor for endothelial cells, prevents AGEs-induced apoptosis of HUVECs. HUVECs were treated with AGEs in the presence or absence of HGF. Treatment of HUVECs with AGEs changed cell morphology, decreased cell viability, and induced DNA fragmentation, leading to apoptosis. Apoptosis was induced by AGEs in a dose- and time-dependent fashion. AGEs markedly elevated Bax and decreased NF-kappaB, but not Bcl-2 expression. Additionally, AGEs significantly inhibited cell growth through a pro-apoptotic action involving caspase-3 and -9 activations in HUVECs. Most importantly, pretreatment with HGF protected against AGEs-induced cytotoxicity in the endothelial cells. HGF significantly promoted the expression of Bcl-2 and NF-kappaB, while decreasing the activities of caspase-3 and -9 without affecting Bax level. Our data suggest that AGEs induce apoptosis in endothelial cells. HGF effectively attenuate AGEs-induced endothelial cell apoptosis. These findings provide new perspectives in the role of HGF in cardiovascular disease.  相似文献   

11.
P19 embryonal carcinoma (EC) cells undergo apoptosis during neuronal differentiation induced by all-trans retinoic acid (RA). Caspase-3-like proteases are activated and involved in the apoptosis of P19 EC cells during neuronal differentiation.1 Recently it has been shown that growth factor signals protect against apoptosis by phosphorylation of Bad. Phosphorylated Bad, an apoptotic member of the Bcl-2 family, cannot bind to Bcl-xL and results in Bcl-xL homodimer formation and subsequent antiapoptotic activity. In the present study, we demonstrate that this system is used generally to protect against apoptosis during neuronal differentiation. Bcl-xL inhibited the activation of caspase-3-like proteases. Basic fibroblast growth factor (bFGF) inhibited more than 90% of the caspase-3-like activity, inhibited processing of caspase-3 into its active form, and inhibited DNA fragmentation. bFGF activated phosphatidyl-inositol-3-kinase (PI3K) and stimulated the phosphorylation of Bad. Phosphorylation was inhibited by wortmannin, an inhibitor of PI3K and its downstream target Akt. Thus, Bad is a target of the FGF receptor-mediated signals involved in the protection against activation of caspase-3.  相似文献   

12.
The mechanism of acacetin-induced apoptosis of human breast cancer MCF-7 cells was investigated. Acacetin caused 50% growth inhibition (IC50) of MCF-7 cells at 26.4% 0.7% M over 24 h in the MTT assay. Apoptosis was characterized by DNA fragmentation and an increase of sub-G1 cells and involved activation of caspase-7 and PARP (poly-ADP-ribose polymerase). Maximum caspase 7 activity was observed with 100 microM acacetin for 24 h. Caspase 8 and 9 activation cascades mediated the activation of caspase 7. Acacetin caused a reduction of Bcl-2 expression leading to an increase of the Bax:Bcl-2 ratio. It also caused a loss of mitochondrial membrane potential that induced release of cytochrome c and apoptosis inducing factor (AIF) into the cytoplasm, enhancing ROS generation and subsequently resulting in apoptosis. Pretreatment of cells with N-acetylcysteine (NAC) reduced ROS generation and cell growth inhibition, and pretreatment with NAC or a caspase 8 inhibitor (Z-IETD-FMK) inhibited the acacetin-induced loss of mitochondrial membrane potential and release of cytochrome c and AIF. Stress-activated protein kinase/c-Jun NH4-terminal kinase 1/2 (SAPK/ JNK1/2) and c-Jun were activated by acacetin but extracellular-regulated kinase 1/2 (Erk1/2) nor p38 mitogen-activated protein kinase (MAPK) were not. Our results show that acacetin-induced apoptosis of MCF-7 cells is mediated by caspase activation cascades, ROS generation, mitochondria-mediated cell death signaling and the SAPK/JNK1/2-c-Jun signaling pathway, activated by acacetin-induced ROS generation.  相似文献   

13.
The bcl-2 and caspase families are important regulators of programmed cell death in experimental models of ischemic, excitotoxic, and traumatic brain injury. The Bcl-2 family members Bcl-2 and Bcl-xL suppress programmed cell death, whereas Bax promotes programmed cell death. Activated caspase-1 (interleukin-1beta converting enzyme) and caspase-3 (Yama/Apopain/Cpp32) cleave proteins that are important in maintaining cytoskeletal integrity and DNA repair, and activate deoxyribonucleases, producing cell death with morphological features of apoptosis. To address the question of whether these Bcl-2 and caspase family members participate in the process of delayed neuronal death in humans, we examined brain tissue samples removed from adult patients during surgical decompression for intracranial hypertension in the acute phase after traumatic brain injury (n=8) and compared these samples to brain tissue obtained at autopsy from non-trauma patients (n=6). An increase in Bcl-2 but not Bcl-xL or Bax, cleavage of caspase-1, up-regulation and cleavage of caspase-3, and evidence for DNA fragmentation with both apoptotic and necrotic morphologies were found in tissue from traumatic brain injury patients compared with controls. These findings are the first to demonstrate that programmed cell death occurs in human brain after acute injury, and identify potential pharmacological and molecular targets for the treatment of human head injury.  相似文献   

14.
15.
We show that mitochondrial DNA (mtDNA)-depleted 143B cells are hypersensitive to staurosporine-induced cell death as evidenced by a more pronounced DNA fragmentation, a stronger activation of caspase-3, an enhanced poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, and a more dramatic cytosolic release of cytochrome c. We also show that B-cell CLL/lymphoma-2 (Bcl-2), B-cell lymphoma extra large (Bcl-X(L)), and myeloid cell leukemia-1 (Mcl-1) are constitutively less abundant in mtDNA-depleted cells, that the inhibition of Bcl-2 and Bcl-X(L) can sensitize the parental cell line to staurosporine-induced apoptosis, and that overexpression of Bcl-2 or Bcl-X(L) can prevent the activation of caspase-3 in ρ(0)143B cells treated with staurosporine. Moreover, the inactivation of cathepsin B with CA074-Me significantly reduced cytochrome c release, caspase-3 activation, PARP-1 cleavage, and DNA fragmentation in mtDNA-depleted cells, whereas the pan-caspase inhibitor failed to completely prevent PARP-1 cleavage and DNA fragmentation in these cells, suggesting that caspase-independent mechanisms are responsible for cell death even if caspases are activated. Finally, we show that cathepsin B is released in the cytosol of ρ(0) cells in response to staurosporine, suggesting that the absence of mitochondrial activity leads to a facilitated permeabilization of lysosomal membranes in response to staurosporine.  相似文献   

16.
Various useful animal models, such as Alzheimer’s disease and Niemann–Pick disease, were provided by U18666A. However, the pathogenesis of U18666A-induced diseases, including U18666A-mediated apoptosis, remains incompletely elucidated, and therapeutic strategies are still limited. Dihydrotestosterone (DHT) has been reported to contribute to the prevention and treatment of neurodegenerative disorders. Our study investigated the neuroprotective activity of DHT in U18666A-related diseases. Apoptosis of C6 cells was detected by Hoechst 33258 fluorescent staining and flow cytometry with annexin V-FITC/PI dual staining. Cell viability was assessed using Cell Counting Kit-8. Expression of apoptosis-related proteins, such as Akt, seladin-1, Bcl-2 family proteins, and caspase-3, was determined using Western blot. Our results demonstrated that the apoptotic rate of C6 cells significantly increased after U18666A addition, but was remarkably reduced after DHT treatment. Pretreatment with DHT attenuated U18666A-induced cell viability loss. PI3K inhibitor LY294002 could suppress DHT anti-apoptotic effect. Furthermore, we discovered that U18666A could significantly downregulate seladin-1 expression in a dose-dependent manner, but no significant change was observed in Bcl-xL, Bax, and P-Akt protein expressions. Compared with U18666A-treated group, the expression of P-Akt, seladin-1, and Bcl-xL significantly increased, and the expression of Bax and caspase-3 remarkably reduced after DHT treatment. However, in the presence of LY294002, the effect of DHT was reversed. In conclusion, we found that seladin-1 may take part in U18666A-induced apoptosis. DHT may inhibit U18666A-induced apoptosis by regulating downstream apoptosis-related proteins including seladin-1, caspase-3, Bcl-xL, and Bax through activation of the PI3K/Akt signal pathway.  相似文献   

17.
Etoposide (VP-16) a topoisomerase II inhibitor induces apoptosis of tumor cells. The present study was designed to elucidate the mechanisms of etoposide-induced apoptosis in C6 glioma cells. Etoposide induced increased formation of ceramide from sphingomyelin and release of mitochondrial cytochrome c followed by activation of caspase-9 and caspase-3, but not caspase-1. In addition, exposure of cells to etoposide resulted in decreased expression of Bcl-2 with reciprocal increase in Bax protein. z-VAD.FMK, a broad spectrum caspase inhibitor, failed to suppress the etoposide-induced ceramide formation and change of the Bax/Bcl-2 ratio, although it did inhibit etoposide-induced death of C6 cells. Reduced glutathione or N-acetylcysteine, which could reduce ceramide formation by inhibiting sphingomyelinase activity, prevented C6 cells from etoposide-induced apoptosis through blockage of caspase-3 activation and change of the Bax/Bcl-2 ratio. In contrast, the increase in ceramide level by an inhibitor of ceramide glucosyltransferase-1, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol caused elevation of the Bax/Bcl-2 ratio and potentiation of caspase-3 activation, thereby resulting in enhancement of etoposide-induced apoptosis. Furthermore, cell-permeable exogenous ceramides (C2- and C6-ceramide) induced downregulation of Bcl-2, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspases-9 and -3. Taken together, these results suggest that ceramide may function as a mediator of etoposide-induced apoptosis of C6 glioma cells, which induces increase in the Bax/Bcl-2 ratio followed by release of cytochrome c leading to caspases-9 and -3 activation.  相似文献   

18.
Abstract

Prostate cancer is the most common malignancies among men. The present study is aimed at the investigation of dihydroxy gymnemic triacetate (DGT) from Gymnema sylvestre on mitochondrial apoptotic pathway and cell cycle arrest. Treatment of DGT resulted in a dose-dependent inhibition of growth of PC-3 cells. The cell cycle arrest was observed at the G2/M phase and accumulation of apoptotic cells was observed in DGT-treated prostate cancer cell lines. The occurrence of apoptosis in these cells was observed by DNA fragmentation. These events were associated with increased levels of pro-apoptotic proteins Bax, Bad and reduced levels of the antiapoptotic proteins Bcl-2, Bcl-xL and Mcl-1. DGT also induces the activation of caspase-9 and caspase-3. The above results, clearly, suggest that DGT induces apoptosis by the intrinsic pathways which could be very useful for the treatment of prostate cancer.  相似文献   

19.
The present study was designed to evaluate the protective effect of ursolic acid (UA) against isoproterenol-induced myocardial infarction. Myocardial infarction was induced by subcutaneous injection of isoproterenol hydrochloride (ISO) (85 mg/kg BW), for two consecutive days. ISO-induced rats showed elevated levels of cardiac troponins T (cTn T) and I (cTn I) and increased activity of creatine kinase-MB (CK-MB) in serum. Lipid peroxidative markers (thiobarbituric acid reactive substances (TBARS), conjugated dienes (CD) and lipid hydroperoxides (HP)) elevated in the plasma and heart tissue whereas decreased activities of enzymatic antioxidants (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR)) in erythrocytes and heart tissue of ISO-induced rats. Non-enzymatic antioxidants (vitamin C, vitamin E and reduced glutathione (GSH)) levels were decreased significantly in the plasma and heart tissue of ISO-induced rats. Furthermore, ISO-induced rats showed increased DNA fragmentation, upregulations of myocardial pro-apoptotic B-cell lymphoma-2 associated-x (Bax), caspase-3, -8 and -9, cytochrome c, tumor necrosis factor-α (TNF-α), Fas and down-regulated expressions of anti-apoptotic B-cell lymphoma-2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xL). UA-administered rats showed decreased levels/activity of cardiac markers, DNA fragmentation and the levels of lipid peroxidative markers in the plasma and heart tissue. Activities of enzymatic antioxidants were increased significantly in the erythrocytes and heart tissue and also non-enzymatic antioxidants levels were increased significantly in the plasma and heart tissue in UA-administered rats. UA influenced decreased DNA fragmentation and an apoptosis by upregulation of anti-apoptotic proteins such as Bcl-2, Bcl-xL and down-regulation of Bax, caspase-3, -8 and -9, cytochrome c, TNF-α, Fas through mitochondrial pathway. Histopathological observations were also found in line with biochemical parameters. Thus, results of the present study demonstrated that the UA has anti-apoptotic properties in ISO-induced rats.  相似文献   

20.
The capacity of cornel iridoid glycoside (CIG) to suppress the manifestations of ischemic stroke was investigated. CIG was administered to rats by the intragastric route once daily for 7 days. Focal cerebral ischemia was induced by 2 h of middle cerebral artery occlusion followed by 24 h of reperfusion. In non-treated rats large infarct areas were observed within 24 h of reperfusion. Examination of the ischemic cerebral cortex revealed microglia and astrocyte activation, increased interleukin-1β (IL-1 β) and tumor necrosis factor-α (TNF-α) concentrations, increased DNA fragmentation in the ischemia penumbra, elevated Bax expression, increased caspase-3 cleavage, and decreased Bcl-2 expression. Pretreatment with CIG decreased the infarct area, DNA fragmentation, IL-1β and TNF-α concentrations, microglia and astrocyte activation, Bax expression, and caspase-3 cleavage while increasing Bcl-2 expression. CIG exerts anti-neuroinflammatory and anti-apoptotic effects which should prove beneficial for prevention or treatment of stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号