首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper briefly reviews the progress in studies of wetland plants in terms of heavy metal pollution. The current research mainly includes the following areas: (1) metal uptake, translocation, and distributions in wetland plants and toxicological effects on wetland plants, (2) radial oxygen loss (ROL) of wetland plants and its effects on metal mobility in rhizosphere soils, (3) constitutional metal tolerance in wetland plants, and (4) mechanisms of metal tolerance by wetland plants. Although a number of accomplishments have been achieved, many issues still remain unanswered. The future research effort is likely to focus on the ROL of wetland plants affecting metal speciation and bioavailability in rhizosphere soils, and the development of rhizosphere management technologies to facilitate and improve practical applications of phytoremediation of metal-polluted soils.  相似文献   

2.

Background and aims

Wetland plants have been widely used in constructed wetlands for the clean-up of metal-contaminated waters. This study investigated the relationship between rate of radial oxygen loss (ROL), root porosity, Zn uptake and tolerance, Fe plaque formation in wetland plants.

Methods

A hydroponic experiment and a pot trial with Zn-contaminated soil were conducted to apply different Zn level treatments to various emergent wetland plants.

Results

Significant differences were found between plants in their root porosities, rates of ROL, Zn uptake and Zn tolerance indices in the hydroponic experiment, and concentrations of Fe and Mn on roots and in the rhizosphere in the pot trial. There were significant positive correlations between root porosities, ROL rates, Zn tolerance, Zn, Fe and Mn concentrations on roots and in the rhizosphere. Wetland plants with higher root porosities and ROL tended to have more Fe plaque, higher Zn concentrations on roots and in their rhizospheres, and were more tolerant of Zn toxicity.

Conclusions

Our results suggest that ROL and root porosity play very important roles in Fe plaque formation, Zn uptake and tolerance, and are useful criteria for selecting wetland plants for the phytoremediation of Zn-contaminated waters and soils/sediments.  相似文献   

3.
湿地植物根系泌氧及其在自然基质中的扩散效应研究进展   总被引:3,自引:0,他引:3  
王文林  韩睿明  王国祥  唐晓燕  梁斌 《生态学报》2015,35(22):7286-7297
湿地植物根系径向泌氧(ROL)是构造根际氧化-还原异质微生态系统的核心要素,其扩散层为好氧、厌氧微生物提供了良好生境并促进其代谢活动,使湿地植物根际成为有机物降解、物质循环及生命活动最为强烈的场所,已有成果证明湿地植物根系ROL的强弱与污染物的去除效果密切相关。因此,开展湿地植物根系ROL及其在自然基质中的扩散效应研究,对于了解湿地植物根系ROL机理及其根际氧环境特征,进而发挥湿地植物的污染去除功能具有十分重要的意义。基于此,首先归纳了湿地植物根系ROL特征及其受影响机制的研究现状,而后从种属差异、时空分布及对微生物的影响等方面对根系ROL在自然基质中的扩散效应国内外研究成果进行了总结,最终根据研究现状与不足对今后的研究方向进行了简要展望。创新之处在于:1)提出影响根系氧供给及氧输送释放通道的环境、生物等因素,阐述了其对根系ROL的影响机制;2)着重阐述了目前研究较少提及的根系ROL扩散效应测定方法。  相似文献   

4.
Metal (Pb, Zn and Fe2+) tolerances, root anatomy and profile of radial oxygen loss (ROL) along the root (i.e., spatial pattern of ROL) were studied in 10 emergent wetland plants. The species studied could be classified into three groups. Group I included Alternanthera philoxeroides, Beckmannia syzigachne, Oenanthe javanica and Polypogon fugax, with high ROL along the whole length of root (‘partial barrier’ to ROL). Group II included Cyperus flabelliformis, Cyperus malaccensis, Juncus effusus, Leersia hexandra and Panicum paludosum, ROL of which was remarkably high just behind the root apex, but decreased significantly at relatively basal regions (‘tight barrier’ to ROL). Group III consisted of only Neyraudia reynaudiana, with extremely low ROL along the length of root. The results indicated that metal tolerance in wetland plants was related to root anatomy and spatial pattern of ROL. Co-evolution of metal (Fe and Zn) tolerance and flood tolerance possibly developed in wetland plants since species showing a ‘tight barrier’ to ROL (a common trait of flood-tolerant species) in basal root zones had higher Fe and Zn tolerances than those showing a ‘partial barrier’. Root anatomy such as lignin and suberin deposition contributed to a ‘tight barrier’ in root and conferred to exclusion ability in tolerant species.  相似文献   

5.
The differences in rhizosphere nitrification activities between high- and low- fertility soils appear to be related to differences in dissolved oxygen concentrations in the soil, implying a relationship to differences in the radial oxygen loss (ROL) of rice roots in these soils. A miniaturised Clark-type oxygen microelectrode system was used to determine rice root ROL and the rhizosphere oxygen profile, and rhizosphere nitrification activity was studied using a short-term nitrification activity assay. Rice planting significantly altered the oxygen cycling in the water-soil system due to rice root ROL. Although the oxygen content in control high-fertility soil (without rice plants) was lower than that in control low-fertility soil, high rice root ROL significantly improved the rhizosphere oxygen concentration in the high-fertility soil. High soil fertility improved the rice root growth and root porosity as well as rice root ROL, resulting in enhanced rhizosphere nitrification. High fertility also increased the content of nitrification-induced nitrate in the rhizosphere, resulting in enhanced ammonium uptake and assimilation in the rice. Although high ammonium pools in the high-fertility soil increased rhizosphere nitrification, rice root ROL might also contribute to rhizosphere nitrification improvement. This study provides new insights into the reasons that an increase in soil fertility may enhance the growth of rice. Our results suggest that an amendment of the fertiliser used in nutrient- and nitrification-poor paddy soils in the red soil regions of China may significantly promote rice growth and rice N nutrition.  相似文献   

6.
Wetland soils provide anoxia-tolerant plants with access to ample light, water, and nutrients. Intense competition, involving chemical strategies, ensues among the plants. The roots of wetland plants are prime targets for root-eating pests, and the wetland rhizosphere is an ideal environment for many other organisms and communities because it provides water, oxygen, organic food, and physical protection. Consequently, the rhizosphere of wetland plants is densely populated by many specialized organisms, which considerably influence its biogeochemical functioning. The roots protect themselves against pests and control their rhizosphere organisms by bioactive chemicals, which often also have medicinal properties. Anaerobic metabolites, alkaloids, phenolics, terpenoids, and steroids are bioactive chemicals abundant in roots and rhizospheres in wetlands. Bioactivities include allelopathy, growth regulation, extraorganismal enzymatic activities, metal manipulation by phytosiderophores and phytochelatines, various pest-control effects, and poisoning. Complex biological-biochemical interactions among roots, rhizosphere organisms, and the rhizosphere solution determine the overall biogeochemical processes in the wetland rhizosphere and in the vegetated wetlands. To comprehend how wetlands really function, it is necessary to understand these interactions. Such understanding requires further research.  相似文献   

7.
Internal transport of gases is crucial for vascular plants inhabiting aquatic, wetland or flood‐prone environments. Diffusivity of gases in water is approximately 10 000 times slower than in air; thus direct exchange of gases between submerged tissues and the environment is strongly impeded. Aerenchyma provides a low‐resistance internal pathway for gas transport between shoot and root extremities. By this pathway, O2 is supplied to the roots and rhizosphere, while CO2, ethylene, and methane move from the soil to the shoots and atmosphere. Diffusion is the mechanism by which gases move within roots of all plant species, but significant pressurized through‐flow occurs in stems and rhizomes of several emergent and floating‐leaved wetland plants. Through‐flows can raise O2 concentrations in the rhizomes close to ambient levels. In general, rates of flow are determined by plant characteristics such as capacity to generate positive pressures in shoot tissues, and resistance to flow in the aerenchyma, as well as environmental conditions affecting leaf‐to‐air gradients in humidity and temperature. O2 diffusion in roots is influenced by anatomical, morphological and physiological characteristics, and environmental conditions. Roots of many (but not all) wetland species contain large volumes of aerenchyma (e.g. root porosity can reach 55%), while a barrier impermeable to radial O2 loss (ROL) often occurs in basal zones. These traits act synergistically to enhance the amount of O2 diffusing to the root apex and enable the development of an aerobic rhizosphere around the root tip, which enhances root penetration into anaerobic substrates. The barrier to ROL in roots of some species is induced by growth in stagnant conditions, whereas it is constitutive in others. An inducible change in the resistance to O2 across the hypodermis/exodermis is hypothesized to be of adaptive significance to plants inhabiting transiently waterlogged soils. Knowledge on the anatomical basis of the barrier to ROL in various species is scant. Nevertheless, it has been suggested that the barrier may also impede influx of: (i) soil‐derived gases, such as CO2, methane, and ethylene; (ii) potentially toxic substances (e.g. reduced metal ions) often present in waterlogged soils; and (iii) nutrients and water. Lateral roots, that remain permeable to O2, may be the main surface for exchange of substances between the roots and rhizosphere in wetland species. Further work is required to determine whether diversity in structure and function in roots of wetland species can be related to various niche habitats.  相似文献   

8.
Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.  相似文献   

9.
湿地植物根表的铁锰氧化物膜   总被引:44,自引:0,他引:44  
刘文菊  朱永官 《生态学报》2005,25(2):358-363
湿地植物根系具有泌氧能力 ,使其根表及根际微环境呈氧化状态。因而 ,土壤溶液中一些还原性物质被氧化 ,如 Fe2 ,Mn2 ,形成的氧化物呈红色或红棕色胶膜状包裹在根表 ,称为铁锰氧化物膜。铁锰氧化物膜及其根际微环境是湿地植物根系吸收养分和污染物的门户 ,势必会影响这些物质的吸收。主要综述了铁锰氧化物膜的形成和组成 ,以及根表形成的氧化物膜的生态效应 ,也就是氧化物胶膜对植物根系吸收外部介质中的养分及污染物质——重金属离子的影响  相似文献   

10.
Rhizosphere bacterial populations associated with four metallophyte plants in one of major polymetallic (Pb–Zn–Cu) semiarid Moroccan Hercynian province (Draâ Sfar, Marrakech, Morocco) presenting long-term contamination mainly with Zn and Pb were analysed and compared to selected control soils. In the highly Zn-, Cu-, Pb- and Cd- contaminated soils, the total number of culturable heterotrophic bacteria were found in low proportions (< 2.6 × 102 – 1.6 × 104 g–1soil). This bacterial content was slightly similar to that found in moderately polluted and controls soils (6.7 × 104 – 5.8 × 106). However, the bacterial diversity and the rhizosphere/soil ratio, which compares the bacterial content (or bacterial charge) around the metallophyte plants with that in non-rhizosphere soil, were the bacteriological parameters mostly affected by heavy metal contamination. The chronic Zinc-stress results in an increase of tolerance to this metal of both the rhizosphere and non-rhizosphere bacterial communities. However, in general, the rhizosphere bacterial populations exhibited less tolerance to Zn toxicity than the bacterial population of non-rhizosphere soils. This result suggests that toxic effects of Zn decrease in the rhizosphere soils of the metallophyte plants.  相似文献   

11.
The objective of this study was to investigate the relationships between root radial oxygen loss (ROL), photosynthesis, and nutrient removal, based on the hypothesis that ROL is primarily an active process which is affected positively by photosynthesis, and is correlated positively with nutrient removal. Four common wetland plants were studied in small-scale monoculture wetlands. Higher ROL coincided with faster growth among the four monocultures. Significant correlation between ROL and photosynthetic rate existed in Cyperus flabelliformis wetland (P < 0.01). Both ROL and photosynthesis represented close correlations with nutrient removal rates in all four monocultures. Significant differences in ROL, photosynthetic rate, removal rates of NH4+, and soluble reactive phosphorus (SRP) were found among the four species. ROL and photosynthetic rates showed single-peak daily and seasonal patterns, with maximum daily values around noon, and with maximum yearly values in summer or autumn for the four monocultures. The results suggest that the ROL of wetland plants is related to active physiological processes. Both ROL and photosynthetic rate are indices which can be used to identify wetland plants with a higher nutrient removal capacity.  相似文献   

12.
不同渗氧能力水稻品种对砷的耐性和积累   总被引:2,自引:0,他引:2  
水稻是目前世界上(尤其是东南亚)最主要的粮食作物之一,也是砷(As)通过食物链进入人体的主要途径。日益加剧的土壤砷污染,严重影响了稻米的产量和品质,进而威胁着人体健康。通过温室实验,研究CNT 87059-3、玉香油占和巴西陆稻3种不同渗氧能力的水稻品种在不同砷浓度处理下的生长情况和砷积累特征,结果表明:(1)渗氧能力强的玉香油占砷耐性指数最高,砷处理浓度为2 mg/L时耐性指数高达0.71,而CNT 87059-3的耐性指数为0.55,巴西陆稻仅有0.17;(2)随着砷处理浓度的升高,3种水稻品种的生物量呈现下降趋势,但渗氧能力强的玉香油占较其它两品种生物量的下降幅度小;(3)在不同砷浓度处理下水稻地下部分的砷含量有显著性差异(P0.001),且同种砷浓度处理下不同水稻品种的地下部分砷含量也存在显著性差异(P0.01),渗氧能力较强的水稻品种与渗氧能力较弱的品种相比能显著降低砷在根部(地下部分)的积累。水稻渗氧能力与其砷耐性和砷积累有显著相关性,渗氧能力越强,水稻的砷耐性越强,砷的积累量越少。因此,通过筛选渗氧能力强的水稻品种,有望降低污染农田水稻的砷含量和健康风险。  相似文献   

13.
修复效率低一直是植物修复技术需要解决的关键问题之一.基于我国的CO2减排压力和CO2对植物生长的必要性,选择C3植物绿豆和C4植物玉米作为修复植物,以DEHP为目标污染物,探索增施CO2对植物修复土壤DEHP污染的影响.结果表明: DEHP对两种植物生长和根际微环境都产生了抑制性影响.增施CO2后,两种植物地上干质量显著增加,叶片SOD酶活性明显下降,根际土壤碱性磷酸酶活性增加,根际微生物群落结构改变,根际耐DEHP胁迫微生物数量增加,表明增施CO2对促进植物生长、增强植物抗DEHP胁迫能力、改善根际微环境有积极作用.增施CO2还促进了两种植物对DEHP的吸收,特别是植物地下部分.这些共同作用导致增施CO2后的两种植物根际DEHP残留浓度明显下降,土壤污染植物修复效率提高.整体上看,增施CO2对C3植物绿豆的影响明显大于C4植物玉米.可以将增施CO2 作为强化植物修复过程的措施之一.  相似文献   

14.
It is hypothesized that metal hyperaccumulator plants have specific rhizosphere conditions, potentially modifying the bioavailability of soil metals. This article aims to further the knowledge about the rhizosphere of the hyperaccumulator Thlaspi caerulescens, focusing on its microflora isolated from metalliferous soils collected in situ where the plants grow naturally. We characterized the cultivable microbial communities isolated from the rhizosphere of one population of this Ni hyperaccumulator species grown on a serpentine soil. The rhizosphere soil harbored a wide variety of microorganisms, predominantly bacteria, confirming the stimulatory effect of the T. caerulescens rhizosphere on microbial growth and proliferation. We tested the hypothesis that the rhizosphere of T. caerulescens influences (1) the metabolic diversity of the bacterial community and (2) the bacterial resistance to metals. The principal component analysis of the Biolog plate's data confirmed a structural effect of the rhizosphere of T. caerulescens on bacterial communities. The percentage of Ni-resistant bacteria was higher in the rhizosphere than in the bulk soil, suggesting a direct effect of the rhizosphere on Ni tolerance, reflecting a greater bacterial tolerance to Ni in the rhizosphere.  相似文献   

15.
16.
COLMER  T. D. 《Annals of botany》2003,91(2):301-309
The present study evaluated waterlogging tolerance, root porosityand radial O2 loss (ROL) from the adventitious roots, of sevenupland, three paddy, and two deep-water genotypes of rice (Oryzasativa L.). Upland types, with the exception of one genotype,were as tolerant of 30 d soil waterlogging as the paddyand deep-water types. In all but one of the 12 genotypes, thenumber of adventitious roots per stem increased for plants grownin waterlogged, compared with drained, soil. When grown in stagnantdeoxygenated nutrient solution, genotypic variation was evidentfor root porosity and rates of ROL, but there was no overalldifference between plants from the three cultural types. Adventitiousroot porosity increased from 20–26 % for plants grownin aerated solution to 29–41 % for plants grown instagnant solution. Growth in stagnant solution also induceda ‘tight’ barrier to ROL in the basal regions ofadventitious roots of five of the seven upland types, all threepaddy types, and the two deep-water types. The enhanced porosityprovided a low resistance pathway for O2 movement to the roottip, and the barrier to ROL in basal zones would have furtherenhanced longitudinal O2 diffusion towards the apex, by diminishinglosses to the rhizosphere. The plasticity in root physiology,as described above, presumably contributes to the ability ofrice to grow in diverse environments that differ markedly insoil waterlogging, such as drained upland soils as well as waterloggedpaddy fields.  相似文献   

17.
Metal hyperaccumulator plants like Thlaspi caerulescens J. & C. Presl. are used for phytoremediation of contaminated soils. Since little is known about the rhizosphere of hyperaccumulators, the influence of T. caerulescens was compared with the effects of Trifolium pratense L. on soil microbes. High- and low-metal soils were collected near a zinc smelter in Palmerton, Penn. Soil pH was adjusted to 5.8 and 6.8 by the addition of Ca(OH)2. Liming increased bacterial populations and decreased metal toxicity to levels allowing growth of both plants. The effects of the plants on total (culturable) bacteria, total fungi, as well as cadmium- and zinc-resistant populations were assessed in nonrhizosphere and rhizosphere soil. Both plants increased microbial populations in rhizosphere soil compared with nonrhizosphere soil. Microbial populations were higher in soils planted with T. pratense, but higher ratios of metal-resistant bacteria were found in the presence of T. caerulescens. We hypothesize that T. caerutescens acidifies its rhizosphere. Soil acidification in the rhizosphere of T. caerulescens would affect metal uptake by increasing available metals around the roots and consequently, increase the selection for metal-resistant bacteria. Soil acidification may be part of the hyperaccumulation process enhancing metal uptake from soil.  相似文献   

18.
Cadmium (Cd), a toxic metal released into agricultural settings induces numerous changes in plant growth and physiology. The main known mechanisms of Cd toxicity include its affinity for sulfhydryl groups in proteins and its ability to replace some essential metals in active sites of enzymes, thus causing inhibition of enzyme activities and protein denaturation. This article reviews detrimental effects of Cd toxicity on the functional biology of plants and summarizes the mechanisms that are activated by plants to prevent the absorption or to detoxify Cd ions such as synthesis of antioxidants, osmolytes, phytochelatins, metallothioneins, etc. Arbuscular mycorrhizal (AM) fungi are reported to be present on the roots of plants growing in metal-contaminated soils and play an important role in metal tolerance. Through mycorrhizal symbiosis, heavy metals are immobilized in the rhizosphere through precipitation in the soil matrix, adsorption onto the root surface or accumulation within roots, and compartmentalized in aboveground parts of the plant. This article unfolds the potential role of AM fungi in enhancing Cd tolerance of plants.  相似文献   

19.
我国土壤重金属污染问题日益突出.作为一种绿色、安全的生物修复技术,植物修复技术备受关注.根系分泌物作为植物-土壤-微生物三者物质交换与信息传递的重要载体,是植物响应外界胁迫的重要生理生态指征,在植物修复过程中发挥关键作用.研究表明,根系分泌物能够有效调控根际微环境,提升植物抗逆能力,影响重金属在根际微域中的环境行为.传...  相似文献   

20.
罗敏  黄佳芳  刘育秀  仝川 《生态学报》2017,37(1):156-166
根系活动是影响湿地植物根际铁异化还原速率的关键因素之一。以往国内外湿地铁异化还原的研究多为分析和比较各类中宏观生境中铁异化还原能力的差异。近年来,湿地植物根际微域铁的生物地球化学行为也日益成为该领域的研究热点。综述了根际铁异化还原研究概况,梳理了根系活动对根际铁异化还原关键因子的作用机制,分析了根际铁异化还原和其他有机质代谢途径的竞争关系,探讨了根际铁异化还原对根系活动动态变化和异质性的响应,提出了根际铁异化还原的概念模型,并指出了未来我国湿地植物根际铁异化还原研究应加强的工作。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号