首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is to test the hypothesis that it depends on plant species used in the wetlands and their stubble growth attributes, as to whether monoculture or mixed wetland is superior in plant growth and nutrient removal. Monoculture and mixed wetland microcosms of five wetland plant species were studied. Significant differences in growth and aboveground biomass were found in the monoculture wetlands. Species that showed faster growth and larger biomass in monoculture wetland were also dominant in the mixed wetland. The mixed wetland exhibited similar biomass and root growth to the averages of five monocultures. ANOVA showed that there were very significant differences among the wetlands in removal rates of all the nutrients studied except nitrate nitrogen (NO3-N) and chemical oxygen demand (COD). The removal rates from the mixed wetland were generally comparable to the highest removal rates from the monocultures. The species exhibited different stubble growth attributes, with some species showing increasing stubble growth and removal rates, while other species showing decreasing stubble growth and removal rates. The results indicated that in both monocultures and mixed constructed wetlands, growth and nutrient removal rates depended on plant species, and attributes of plant stubble growth affected overall growth and nutrient removal capabilities.  相似文献   

2.
Laboratory experiments were conducted to investigate the effects of water level fluctuation on plant radial oxygen loss (ROL), root porosity, plant growth performance, and nitrogen dynamics in vertical subsurface flow wetland mesocosms. Four types of mesocosms were used: control with static water level, control with fluctuating water level, static water level with plants, and fluctuating water level with plants. Typha orientalis, an emergent macrophyte, was used in this study. Changes of ROL, root porosity, and plant biomass were measured every six weeks. Shoot height and density of plants were also observed. Every two weeks, the nitrogen removal efficiency of the four systems was monitored. Maximum ROL values under static and fluctuating conditions were 7.58 and 2.73 μmol/g DW/h, respectively. The porosity values of roots under static and fluctuating conditions ranged between 33–47% and 30–37%, respectively. Average removal efficiency of both total nitrogen (TN) and ammonium nitrogen (NH4-N) in the fluctuating condition with plants was about 65%, and nitrate nitrogen removal in the static condition with plants was about 75%. Although the water level fluctuation caused a considerable reduction in ROL and root porosity, it clearly produced a significant improvement in TN and NH4-N removal.  相似文献   

3.

Background and aims

Wetland plants have been widely used in constructed wetlands for the clean-up of metal-contaminated waters. This study investigated the relationship between rate of radial oxygen loss (ROL), root porosity, Zn uptake and tolerance, Fe plaque formation in wetland plants.

Methods

A hydroponic experiment and a pot trial with Zn-contaminated soil were conducted to apply different Zn level treatments to various emergent wetland plants.

Results

Significant differences were found between plants in their root porosities, rates of ROL, Zn uptake and Zn tolerance indices in the hydroponic experiment, and concentrations of Fe and Mn on roots and in the rhizosphere in the pot trial. There were significant positive correlations between root porosities, ROL rates, Zn tolerance, Zn, Fe and Mn concentrations on roots and in the rhizosphere. Wetland plants with higher root porosities and ROL tended to have more Fe plaque, higher Zn concentrations on roots and in their rhizospheres, and were more tolerant of Zn toxicity.

Conclusions

Our results suggest that ROL and root porosity play very important roles in Fe plaque formation, Zn uptake and tolerance, and are useful criteria for selecting wetland plants for the phytoremediation of Zn-contaminated waters and soils/sediments.  相似文献   

4.
Radial oxygen loss (ROL) has been suggested to be a major process to protect plants exposed to root anaerobic stress. In the present study, we aimed to test the importance of root porosity and radial oxygen loss on the aquatic macrophyte resistance to sediment anoxia. We expected that species living in eutrophic environments characterized by anaerobic conditions in sediments exhibited higher root porosity and radial oxygen loss than species restrained to oligotrophic environments. In this way, we compared the responses to sediment anoxia of two hydrophyte species growing under meso-eutrophic conditions in the field (Myriophyllum spicatum L. and Vallisneria spiralis L.) and three species growing under oligotrophic conditions (Potamogeton coloratus Horne, Elodea canadensis Michx and Sparganium emersum Michx.). Under laboratory conditions, ROL, root porosity, plant metabolism (aerobic respiration, photosynthesis, root fermentative activity) and plant growth were analysed after 3?months of acclimation in anaerobic sediments and compared with control values obtained from aerobic sediments. The results showed that two meso-eutrophic species (M. spicatum and V. spiralis) survived in anaerobic sediments and maintained similar photosynthesis rates than those measured under aerobic conditions. In contrast, the three oligotrophic species (P. coloratus, E. canadensis and S. emersum) suffered net biomass loss and depressed their photosynthesis rates under anaerobic conditions. All variables associated with plant tolerance to anaerobic conditions (maintenance of photosynthesis, aerobic respiration and growth rate, and limitation of root fermentative activity) were positively linked to root porosity and ROL. According to our hypothesis, species that could survive to anaerobic conditions were the species able to increase their root porosity and ROL under these conditions. Thus, in ecological studies, it would be useful to use the root porosity and ROL plasticity as biological traits in order to model the distribution of macrophytes in river floodplains.  相似文献   

5.
Metal (Pb, Zn and Fe2+) tolerances, root anatomy and profile of radial oxygen loss (ROL) along the root (i.e., spatial pattern of ROL) were studied in 10 emergent wetland plants. The species studied could be classified into three groups. Group I included Alternanthera philoxeroides, Beckmannia syzigachne, Oenanthe javanica and Polypogon fugax, with high ROL along the whole length of root (‘partial barrier’ to ROL). Group II included Cyperus flabelliformis, Cyperus malaccensis, Juncus effusus, Leersia hexandra and Panicum paludosum, ROL of which was remarkably high just behind the root apex, but decreased significantly at relatively basal regions (‘tight barrier’ to ROL). Group III consisted of only Neyraudia reynaudiana, with extremely low ROL along the length of root. The results indicated that metal tolerance in wetland plants was related to root anatomy and spatial pattern of ROL. Co-evolution of metal (Fe and Zn) tolerance and flood tolerance possibly developed in wetland plants since species showing a ‘tight barrier’ to ROL (a common trait of flood-tolerant species) in basal root zones had higher Fe and Zn tolerances than those showing a ‘partial barrier’. Root anatomy such as lignin and suberin deposition contributed to a ‘tight barrier’ in root and conferred to exclusion ability in tolerant species.  相似文献   

6.
湿地植物根系泌氧及其在自然基质中的扩散效应研究进展   总被引:3,自引:0,他引:3  
王文林  韩睿明  王国祥  唐晓燕  梁斌 《生态学报》2015,35(22):7286-7297
湿地植物根系径向泌氧(ROL)是构造根际氧化-还原异质微生态系统的核心要素,其扩散层为好氧、厌氧微生物提供了良好生境并促进其代谢活动,使湿地植物根际成为有机物降解、物质循环及生命活动最为强烈的场所,已有成果证明湿地植物根系ROL的强弱与污染物的去除效果密切相关。因此,开展湿地植物根系ROL及其在自然基质中的扩散效应研究,对于了解湿地植物根系ROL机理及其根际氧环境特征,进而发挥湿地植物的污染去除功能具有十分重要的意义。基于此,首先归纳了湿地植物根系ROL特征及其受影响机制的研究现状,而后从种属差异、时空分布及对微生物的影响等方面对根系ROL在自然基质中的扩散效应国内外研究成果进行了总结,最终根据研究现状与不足对今后的研究方向进行了简要展望。创新之处在于:1)提出影响根系氧供给及氧输送释放通道的环境、生物等因素,阐述了其对根系ROL的影响机制;2)着重阐述了目前研究较少提及的根系ROL扩散效应测定方法。  相似文献   

7.
4种木本植物在潜流人工湿地环境下的适应性与去污效果   总被引:5,自引:0,他引:5  
为解决冬季植物问题,将4种木本植物引入潜流人工湿地环境,进行植物适应性和去污效果研究,结果表明:(1)4种木本植物在潜流人工湿地环境下的净光合速率日变化规律为夹竹桃、栀子、女贞变化规律是"双峰"型,木槿则是"单峰"型;叶片气孔导度日变化规律为木槿是"单峰"型,其他3个品种没有明显规律;植物胞间CO2浓度的日变化规律与净光合速率日变化规律相反对应关系;蒸腾速率日变化规律为4种植物都呈现"单峰"型规律,且高峰出现在11:00—13:00之间。(2)除女贞外较低外,其余3种植物叶绿素含量较高但差异不大;丙二醛含量较高的是木槿与栀子,女真最低;氮磷积累量最高是夹竹桃,最低的是木槿;基质脲酶活性夹竹桃、木槿高于栀子、女贞,基质磷酸酶活性在4种植物中比较接近。(3)4种木本植物引入湿地后长出了白色的水生根系,且数量多于陆地土壤栽培条件的土培根系;在内部结构上也有较大差异,土培根系的组织非常致密,水生根系则有发达的通气组织。(4)试验期间系统TN平均去除率为40.2%,TP平均去除率为80.8%。COD Cr的平均去除率较低为15.4%,NH+4-N的平均去除率为61.8%,各月份间的差异随着季节温度的变化基本一致。  相似文献   

8.
Photosynthetic responses of intact leaves of the desert shrub Encelia farinosa were measured during a long term drought cycle in order to understand the responses of stomatal and nonstomatal components to water stress. Photosynthetic rate at high irradiance and leaf conductance to water vapor both decreased linearly with declining leaf water potential. The intercellular CO2 concentration (ci) remained fairly constant as a function of leaf water potential in plants subjected to a slow drought cycle of 25 days, but decreased in plants exposed to a 12-day drought cycle. With increasing water stress, the slope of the dependence of photosynthesis on ci (carboxylation efficiency) decreased, the maximum photosynthetic rates at high ci became saturated at lower values, and water use efficiency increased. Both the carboxylation efficiency and photosynthetic rates were positively correlated with leaf nitrogen content. Associated with lower leaf conductances, the calculated stomatal limitation to photosynthesis increased with water stress. However, because of simultaneous changes in the dependence of photosynthesis on ci with water stress, increased leaf conductance alone in water-stressed leaves would not result in an increase in photosynthetic rates to prestressed levels. Both active osmotic adjustment and changes in specific leaf mass occurred during the drought cycle. In response to increased water stress, leaf specific mass increased. However, the increases in specific leaf mass were associated with the production of a reflective pubescence and there were no changes in specific mass of the photosynthetic tissues. The significance of these responses for carbon gain and water loss under arid conditions are discussed.  相似文献   

9.
《Ecological Engineering》2007,29(2):154-163
The South Nation River Watershed, in eastern Ontario, Canada, is an agricultural watershed impacted by excess nutrient loading primarily from agricultural activities. A constructed wetland for the treatment of agricultural wastewater from a 150-cow dairy operation in this watershed was monitored in its eighth operating season to evaluate the proportion of total nitrogen (TN) (approximated by total Kjeldahl nitrogen (TKN) due to low NO3) and total phosphorus (TP) removal that could be attributed to storage in Typha latifolia L. and Typha angustifolia L., which dominate this system. Nutrient loading rates were high, with 16.2 kg ha−1 d−1 N and 3.4 kg ha−1 d−1 P entering the wetland and loading the first wetland cell. Plant uptake accounted for 0.7% of TKN removal when the vegetated free water surface cells were considered together. However, separately, in the second wetland cell with lower N and P loading rates, plants accounted for 9% of TKN, 21% of NH4+ and 5% of TP removal. Plant uptake was significant to overall removal given wetland age and nutrient loading. Nutrient storage during the growing season at this constructed wetland helped reduce the nutrient load entering the watershed, already stressed by intensive local agriculture.  相似文献   

10.
四种挺水植物生理生态特性和污水净化效果研究   总被引:3,自引:0,他引:3  
采用人工气候室水培系统以人工污水培养慈姑(Sagittaria trifolia)、花皇冠(Echinodorus berteroi)、菖蒲(Acorus calamus)和芦苇(Phragmites australis) 4种挺水植物,比较它们的根和地上部分生物量、根长、根寿命、根孔隙度、根径向泌氧量(ROL)、光合作用等生理生态特性及对总氮(TN)、总磷(TP)、化学需氧量(COD)的去除效果。结果表明,ROL与根孔隙度、光合速率、地上生物量呈显著正相关(P<0.05),与根长极显著正相关(P<0.01);TP的去除与光合速率、COD的去除与ROL显著正相关; TN的去除与生物量极显著正相关(P<0.01),但与根生物量和地上部分生物量的比值(根茎比)显著负相关(P<0.05)。慈姑和花皇冠拥有庞大生物量和发达的根系,根孔隙度、ROL和光合作用等生理指标较高,在水培系统中的污水净化效果接近甚至优于菖蒲和芦苇,是构建人工湿地的优良植物。  相似文献   

11.
蚯蚓对湿地植物光合特性及净化污水能力的影响   总被引:2,自引:0,他引:2  
以香蒲、芦苇和美人蕉为研究对象,并以土壤+沙子+有机质混合物为供试基质模拟人工湿地处理污水,采用向基质中加入蚯蚓与未加入蚯蚓2种处理。研究加入蚯蚓后,香蒲、芦苇和美人蕉光合速率、蒸腾速率、SPAD值和水分蒸发、蒸腾量的变化及其对净化污水能力的影响。结果表明:与未加入蚯蚓相比,加入蚯蚓后,香蒲、芦苇和美人蕉的净光合速率、蒸腾速率、SPAD值和水分蒸发、蒸腾量均增加,其中芦苇的净光合速率、蒸腾速率和水分蒸发、蒸腾量增加达到显著水平(P <0.05),而香蒲的水分蒸发、蒸腾量增加也达到显著水平(P <0.05);加入蚯蚓后,香蒲、芦苇和美人蕉对CODMn、NH4+-N、NO3--N、TN和TP的去除率均增加,且香蒲和芦苇对CODMn的去除率显著增加 (P <0.05)。加入蚯蚓后,香蒲、芦苇和美人蕉的SPAD值均增加,说明蚯蚓能提高湿地植物对氮的吸收,增加植株中的氮含量,促进湿地植物的光合速率和蒸腾速率从而提高对污水的净化能力。  相似文献   

12.
The aim of this study was to compare the growth, community structure, and nutrient removal rates between monoculture and mixed wetlands, based on the hypothesis that it depends on the plant species used in the wetlands as to whether monoculture or mixed wetland is superior in plant growth and nutrient removal. Pilot-scale monoculture and mixed constructed wetlands were studied over 4 years. The monoculture wetland had a community height similar to the mixed wetland during the early years but a significantly lower height than the mixed wetland (P < 0.05) during the last year. The mixed wetland also displayed a higher plant density than the monoculture wetland (P < 0.05). The leaf area index in the monoculture wetland was significantly higher in the first year (P < 0.05) and significantly lower in the later years (P < 0.05) than that in the mixed wetland. The monoculture wetland had a similar vertical distribution of below-ground biomass over 4 years, while the mixed wetland showed a significant change in vertical distribution of below-ground biomass in the last 2 years. The monoculture wetland had a larger (P < 0.05) above-ground biomass and a similar leaf biomass in the first year, and a smaller above-ground biomass (P < 0.05) and a smaller leaf biomass (P < 0.05) than the mixed wetland during the latter 2 years. The amount of standing dead mass was smaller in the mixed wetland than in the monoculture wetland (P < 0.05). The mixed wetland exhibited a significantly lower NH4-N removal rate in the first year (P < 0.05), and significantly higher NH4-N removal rate in the last year, when compared to the monoculture wetland (P < 0.05). The study indicated that species competition and stubble growth resulted in significant differences between monoculture and mixed constructed wetlands in plant growth, community structure, and nutrient removal rates.  相似文献   

13.
We investigated the ability of eelgrass (Zostera marina) to adjust light requirements to seasonal changes in temperature, light and nutrient conditions through changes in metabolism, pigment and nutrient content. In agreement with expectations we found that rates of respiration and light saturated photosynthesis of summer acclimated plants peaked at higher temperatures (5 °C and 2 °C higher, respectively), and were lower than of winter acclimated plants, both at sub- and supra-optimal temperatures. Moreover respiration rates were generally more sensitive to increasing temperatures than photosynthetic rates, especially so for cold acclimated plants in February (36% higher Q10-values). These changes were accompanied by a reduction in chlorophyll a and nitrogen concentrations in leaves by 35% and 60% respectively from February to August. The critical light requirement (EC) of Z. marina to maintain a positive carbon balance increased exponentially with increasing temperature but less so for summer-acclimated than for winter-acclimated plants. However, combining EC vs temperature models for whole-plants with data on daily light availability showed that seasonal acclimation in metabolism increased the annual period, when light requirements were meet at the 2-5 m depth interval, by 32-66 days. Hence, acclimation is an important mechanism allowing eelgrass to grow faster and penetrate to deeper waters. Critical depth limits estimated for different combinations of summer temperatures and water clarity in a future climate scenario, suggested that expected increases in temperature and nutrient run-off have synergistic negative effects, especially in clear waters, stressing the importance of continued efforts to improve water clarity of coastal waters.  相似文献   

14.
Myriophyllum spicatum and Potamogeton crispus are common species of shallow eutrophic lakes in north-eastern Germany, where a slow recovery of the submersed aquatic vegetation was observed. Thus, the characterisation of the root oxygen release (ROL) as well as its implication for geochemical processes in the sediment are of particular interest. A combination of microelectrode measurements, methylene blue agar and a titanium(III) redox buffer was used to investigate the influence of the oxygen content in the water column on ROL, diel ROL dynamics as well as the impact of sediment milieu. Oxygen gradients around the roots revealed a maximum oxygen diffusion zone of up to 250 μm. During a sequence with a light/dark cycle as well as alternating aeration of the water column, maximum ROL with up to 35% oxygen saturation at the root surface occurred under light/O2-saturated conditions. A decrease to about 30% was observed under dark/O2-saturated conditions, no ROL was detected at dark/O2-depleted conditions and only a weak ROL with 5–10% oxygen saturation at the root surface was measured under light but O2-depleted water column. These results indicate, that during darkness, ROL is supplied by oxygen from the water column and even during illumination and active photosynthesis production, ROL is modified by the oxygen content in the water column. Visualisation of ROL patterns revealed an enhanced ROL for plants which were grown in sulfidic littoral sediment in comparison to plants grown in pure quartz sand. For both plant species grown in sulfidic littoral sediment, a ROL rate of 3–4 μmol O2 h−1 plant−1 was determined with the Ti(III) redox buffer. For plants grown in pure quartz sand, the ROL rate decreased to 1–2 μmol O2 h−1 plant−1. Hence, aside from the oxygen content in the water column, the redox conditions and microbial oxygen demand in the sediment has to be considered as a further major determinant of ROL.  相似文献   

15.
Two photosynthetic periods and photosynthetic photon flux densities (PPFD) were used to study the relationship between the rate of photosynthesis and starch accumulation in vegetative soybean leaves (Merr. cv Amsoy 71). Plants grown in short daily photosynthetic periods (7 hours) had higher rates of CO2 fixation per unit leaf dry weight and of leaf starch accumulation than plants grown in long daily photosynthetic periods (14 hours) irrespective of PPFD. CO2 fixation rates per unit leaf area were similar in 7-hour and 14-hour plants grown at low PPFD but were highest in 14-hour plants at the high PPFD. When single leaves of 14-hour plants were given 7-hour photosynthetic periods, their rates of starch accumulation remained unchanged. The programming of starch accumulation rate and possibly of photosynthetic rate by the length of the daily photosynthetic period is apparently a whole-plant, not an individual leaf, phenomenon. Programming of chloroplast starch accumulation rate by length of the daily photosynthetic and/or dark periods was independent of PPFD within the ranges used in this experiment.  相似文献   

16.
Phytoplankton primary productivity of eleven irrigation reservoirs located in five river basins in Sri Lanka was determined on a single occasion together with light climate and nutrient concentrations. Although area-based gross primary productivity (1.43–11.65 g O2 m–2 d–1) falls within the range already established for tropical water bodies, net daily rate was negative in three water bodies. Light-saturated optimum rates were found in water bodies, with relatively high algal biomass, but photosynthetic efficiency or specific rates were higher in water bodies with low algal biomass, indicating nutrient limitation or physiological adaptation of phytoplankton. Concentrations of micronutrients and algal biomass in the reservoirs are largely altered by high flushing rate resulting from irrigation release. Underwater light climate and nutrient availability control the rate of photosynthesis and subsequent area-based primary production to a great extent. However, morpho-edephic index or euphotic algal biomass in the most productive stratum of the water column is not a good predictor of photosynthetic capacity or daily rate of primary production of these shallow tropical irrigation reservoirs.  相似文献   

17.
Photosynthetic rate, ribulose 1,5-bisphosphate carboxylase activity, specific leaf weight, and leaf concentrations of carbohydrates, proteins, chlorophyll, and inorganic phosphate were determined periodically from midbloom until maturity in leaves of soybean plants (Glycine max L., var. Hodgson) from which reproductive and vegetative sinks had been removed 32 hours before measurement, or continuously since midbloom.

Leaf photosynthesis, measured in the top of the canopy, was partially inhibited by both sink removal treatments. This inhibition was of constant magnitude from midbloom until maturity.

Leaf photosynthesis in the top of the canopy declined from midbloom until maturity in the control as well as in the desinked plants. The decline in photosynthesis was gradual at first, but later became more abrupt. The photosynthetic decline was equally evident in the yellowing leaves of control plants and in the dark green leaves of the continuously desinked plants.

Neither the inhibition of photosynthesis by sink removal nor the decline in photosynthetic rate with time was clearly related to any of the measured traits.

  相似文献   

18.
The photosynthetic characteristics of several wetland plants and their influence on oxygen-evolving activities and disposal efficiencies of horizontal flow subsurface constructed wetlands were compared. The results indicated that the photosynthetic rate of wetlands plants was highly correlated with light intensity and temperature. The photosynthetic characteristics of wetlands species can affect their ability to provide oxygen, and this ultimately influences their disposal efficiencies. Observations indicated that the ability of wetland plants to provide oxygen and remove pollutants decreases in the following order: Phragmites > Canna > Camellia > Dracaena.  相似文献   

19.
To study the effect of water flow on coral growth, four series of ten coral nubbins of Galaxea fascicularis were exposed to four different flow regimes (0, 10, 20, and 25 cm s−1, bidirectional flow) for 42 weeks. Buoyant weight, surface area, and polyp number were measured at regular intervals. Net photosynthesis and dark respiration were measured at the corresponding flow speeds, and daily amount of photosynthetic carbon left for coral growth was calculated. Finally, skeletal density and CN content, chlorophyll concentration and dry weight of coral tissue were determined for each coral. Specific growth rate (in day−1) decreased with time in each flow treatment. Absence of flow resulted in significantly lower growth rates. Average specific growth rate calculated over the entire experiment was not significantly different between 10 and 20 cm s−1, while it was significantly higher at 25 cm s−1. From 10 to 25 cm s−1, average net photosynthetic rate decreased and average dark respiration rate did not change significantly. Scope for growth based on phototrophic carbon decreased with increasing flow. Growth was not positively correlated with either photosynthesis or respiration, or scope for growth. It is suggested that higher flow rates reduce the chance of disturbance of coral growth by competing algae or cyanobacteria, allowing corals to grow more readily with the maximum specific growth rate possible under the given environmental conditions. Notably, other effects of increased flow, such as increased respiratory rates and increased (in)organic nutrient uptake, might have been equally responsible for the increased growth of the corals in 25 cm s−1.  相似文献   

20.
Summary Plants of the salt marsh grass Spartina alterniflora Loisel were collected from North Carolina and grown under controlled nutrient, temperature, and photoperiod conditions. Plants were grown at two different illumination levels; substrate salinity was varied, and leaf photosynthesis, transpiration, total chlorophyll, leaf xylem pressure, and specific leaf weight were measured. Conditions were controlled so that gaseous and liquid phase resistances to CO2 diffusion could be calculated. Growth at low illumination and high salinity (30 ppt) resulted in a 50% reduction in photosynthesis. The reduction in photosynthesis of plants grown at low illumination was correlated with an increase in gaseous resistance. Photosynthetic rates of plants grown at high salinity and high illumination were reduced only slightly compared to rates of plants grown, in 10 ppt and Hoagland's solution. Both high salinity and high illumination were correlated with increases in specific leaf weight. Chlorophyll data indicate that specific leaf weight differences were the result of increases in leaf thickness. It is therefore hypothesized that photosynthetic response can be strongly influenced by salinity-induced changes in leaf structure. Similarities in photosynthetic rate on an area basis at high, illumination were apparently the result, of increases in leaf thickness at high salinity. Photosynthetic rates were generally quite high, even at salinities close to open ocean water, and it is concluded that salinity rarely limits photosynthesis in S. alterniflora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号