首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enhancement of oxygen transport from shoot to root tip by the formation of aerenchyma and also a barrier to radial oxygen loss (ROL) in roots is common in waterlogging‐tolerant plants. Zea nicaraguensis (teosinte), a wild relative of maize (Zea mays ssp. mays), grows in waterlogged soils. We investigated the formation of aerenchyma and ROL barrier induction in roots of Z. nicaraguensis, in comparison with roots of maize (inbred line Mi29), in a pot soil system and in hydroponics. Furthermore, depositions of suberin in the exodermis/hypodermis and lignin in the epidermis of adventitious roots of Z. nicaraguensis and maize grown in aerated or stagnant deoxygenated nutrient solution were studied. Growth of maize was more adversely affected by low oxygen in the root zone (waterlogged soil or stagnant deoxygenated nutrient solution) compared with Z. nicaraguensis. In stagnant deoxygenated solution, Z. nicaraguensis was superior to maize in transporting oxygen from shoot base to root tip due to formation of larger aerenchyma and a stronger barrier to ROL in adventitious roots. The relationships between the ROL barrier formation and suberin and lignin depositions in roots are discussed. The ROL barrier, in addition to aerenchyma, would contribute to the waterlogging tolerance of Z. nicaraguensis.  相似文献   

2.
The toxicity of four volatile fatty acids (VFAs) as anaerobic digestion (AD) intermediates was investigated at pH 7. Photobacterium phosphoreum T3 was used as an indicator organism. Binary, ternary and mixtures of AD intermediates were designated by letters A (acetic acid + propionic acid), B (acetic acid + butyric acid), C (acetic acid + ethanol), D (propionic acid + butyric acid), E (propionic acid + ethanol), F (butyric acid + ethanol), G (acetic acid + propionic acid + butyric acid), H (acetic acid + propionic acid + ethanol), I (acetic acid + butyric acid+ ethanol), J (propionic acid + butyric acid + ethanol) and K (acetic acid + propionic acid + butyric acid + ethanol) to assess the toxicity through equitoxic mixing ratio method. The IC50 values of acetic acid, propionic acid, butyric acid and ethanol were 9.812, 7.76, 6.717 and 17.33 g/L respectively, displaying toxicity order of: butyric acid > propionic acid > acetic acid > ethanol being additive in nature. The toxic effects of four VFAs could be designated as synergistic and one additive in nature.  相似文献   

3.
Growth in stagnant, oxygen‐deficient nutrient solution increased porosity in adventitious roots of two monocotyledonous (Carex acuta and Juncus effusus) and three dicotyledonous species (Caltha palustris, Ranunculus sceleratus and Rumex palustris) wetland species from 10 to 30% under aerated conditions to 20–45%. The spatial patterns of radial oxygen loss (ROL), determined with root‐sleeving oxygen electrodes, indicated a strong constitutive ‘barrier’ to ROL in the basal root zones of the two monocotyledonous species. In contrast, roots of the dicotyledonous species showed no significant ‘barrier’ to ROL when grown in aerated solution, and only a partial ‘barrier’ when grown in stagnant conditions. This partial ‘barrier’ was strongest in C. palustris, so that ROL from basal zones of roots of R. sceleratus and R. palustris was substantial when compared to the monocotyledonous species. ROL from the basal zones would decrease longitudinal diffusion of oxygen to the root apex, and therefore limit the maximum penetration depth of these roots into anaerobic soil. Further studies of a larger number of dicotyledonous wetland species from a range of substrates are required to elucidate the ecophysiological consequences of developing a partial, rather than a strong, ‘barrier’ to ROL.  相似文献   

4.

Background and Aims

Many wetland species form aerenchyma and a barrier to radial O2 loss (ROL) in roots. These features enhance internal O2 diffusion to the root apex. Barrier formation in rice is induced by growth in stagnant solution, but knowledge of the dynamics of barrier induction and early anatomical changes was lacking.

Methods

ROL barrier induction in short and long roots of rice (Oryza sativa L. ‘Nipponbare’) was assessed using cylindrical root-sleeving O2 electrodes and methylene blue indicator dye for O2 leakage. Aerenchyma formation was also monitored in root cross-sections. Microstructure of hypodermal/exodermal layers was observed by transmission electron microscopy (TEM).

Key Results

In stagnant medium, barrier to ROL formation commenced in long adventitious roots within a few hours and the barrier was well formed within 24 h. By contrast, barrier formation took longer than 48 h in short roots. The timing of enhancement of aerenchyma formation was the same in short and long roots. Comparison of ROL data and subsequent methylene blue staining determined the apparent ROL threshold for the dye method, and the dye method confirmed that barrier induction was faster for long roots than for short roots. Barrier formation might be related to deposition of new electron-dense materials in the cell walls at the peripheral side of the exodermis. Histochemical staining indicated suberin depositions were enhanced prior to increases in lignin.

Conclusions

As root length affected formation of the barrier to ROL, but not aerenchyma, these two acclimations are differentially regulated in roots of rice. Moreover, ROL barrier induction occurred before histochemically detectable changes in putative suberin and lignin deposits could be seen, whereas TEM showed deposition of new electron-dense materials in exodermal cell walls, so structural changes required for barrier functioning appear to be more subtle than previously described.  相似文献   

5.
* High radial oxygen loss (ROL) from roots of aquatic plants to reduced sediments is thought to deplete the roots of oxygen and restrict the distribution of those species unable to form a barrier to oxygen loss. Metal precipitates with high iron content (Fe-plaques) frequently form on roots of aquatic plants and could create such a diffusion barrier, thereby diverting a larger proportion of downward oxygen transport to the root meristems. * To investigate whether Fe-plaques form a barrier to oxygen loss, ROL and internal oxygen concentrations were measured along the length of roots of the freshwater plant Lobelia dortmanna using platinum sleeve electrodes and Clark-type microelectrodes. * Measurements showed that ROL was indeed lower from roots with Fe-plaques than roots without plaques and that ROL declined gradually with thicker iron coating on roots. The low ROL was caused by low diffusion coefficients through root walls with Fe-plaques resulting in higher internal oxygen concentrations in the root lacunae. * By diverting a larger proportion of downward oxygen transport to root meristems in L. dortmanna, the presence of Fe-plaques should diminish root anoxia and improve survival in reduced sediments.  相似文献   

6.
Symptoms which are associated with die-back in Phragmites : growth inhibition, root and bud death, premature shoot senescence, blocked aeration and vascular systems, especially in rhizomes and roots, and abnormal surface and internal cell-wall lignification and suberization of roots were induced by each of three of the lower volatile organic acids, propionic, butyric and caproic. These acids were applied in nutrient media in concentrations similar to those previously associated with die-back sites and/or in sediments containing rotting rhizomes and roots of the plant. At concentrations of 1.4 and 0.56 mM, respectively, butyric and caproic acids were each found to be highly toxic at pH 4.5, but relatively innocuous at pH 6. Propionic acid, applied at a much higher concentration of 10.4 mM, was highly toxic at both pH 4.5 and 6. The results support previous findings that the undissociated forms of the organic acids are the more toxic. Rhizomes and roots, rotting in water or waterlogged sand, released cocktails of acids and produced pH in the range 4.8–5.4. Phragmites seedlings planted in these media died within 12 h. Overall, the results support the theory that die-back in Phragmites can be induced and/or perpetuated by organic acids released from the decaying underground parts of the plant or other sources of organic matter.  相似文献   

7.
Adventitious roots of rice (Oryza sativa) acclimatize to root-zone O(2) deficiency by increasing porosity, and induction of a barrier to radial O(2) loss (ROL) in basal zones, to enhance longitudinal O(2) diffusion towards the root tip. Changes in root-zone gas composition that might induce these acclimatizations, namely low O(2), elevated ethylene, ethylene-low O(2) interactions, and high CO(2), were evaluated in hydroponic experiments. Neither low O(2) (0 or 0.028 mol m(-3) O(2)), ethylene (0.2 or 2.0 microl l(-1)), or combinations of these treatments, induced the barrier to ROL. This lack of induction of the barrier to ROL was despite a positive response of aerenchyma formation to low O(2) and elevated ethylene. Carbon dioxide at 10 kPa had no effect on root porosity, the barrier to ROL, or on growth. Our findings that ethylene does not induce the barrier to ROL in roots of rice, even though it can enhance aerenchyma formation, shows that these two acclimatizations for improved root aeration are differentially regulated.  相似文献   

8.
1. The effects in the cow of intraruminal infusions of acetic acid, propionic acid or butyric acid on the secretion of the component fatty acids of the milk fat, and of these acids and of lactic acid on the composition of the blood plasma of the jugular vein, have been studied. 2. The infusion of acetic acid or butyric acid increased the yield of the C4–C16 acids of milk fat but decreased the yield of C18 acids. The infusion of propionic acid decreased the yields of all major component acids except palmitic acid and possibly lauric acid. 3. The changes in the concentrations in blood plasma of glucose and of ketone bodies were consistent with the glucogenic effect of propionic acid and the ketogenic effects of butyric acid and acetic acid. The effects of lactic acid were not consistent from cow to cow. Only with the infusion of acetic acid was a significant increase in the concentration of total volatile fatty acids in blood plasma found. Infusions of butyric acid and of propionic acid tended to depress the concentration of citric acid in the blood plasma and infusion of acetic acid increased it. No consistent effects of the infused acids on the concentration in blood plasma of esterified cholesterol, free cholesterol, triglyceride or phospholipid were observed. 4. The possibility is discussed that the effects of the infused acids on milk-fat secretion are caused through an alteration of the concentrations of precursors of milk fat in mammary arterial blood.  相似文献   

9.
Shrimp farming accounts for more than 40% of the world shrimp production. Luminous vibriosis is a shrimp disease that causes major economic losses in the shrimp industry as a result of massive shrimp kills due to infection. Some farms in the South Asia use antibiotics to control Vibrio harveyi, a responsible pathogen for luminous vibriosis. However, the antibiotic-resistant strain was found recently in many shrimp farms, which makes it necessary to develop alternative pathogen control methods. Short-chain fatty acids are metabolic products of organisms, and they have been used as food preservatives for a long time. Organic acids are also commonly added in feeds in animal husbandry, but not in aquaculture. In this study, growth inhibitory effects of short-chain fatty acids, namely formic acid, acetic acid, propionic acid, and butyric acid, on V. harveyi were investigated. Among four acids, formic acid showed the strongest inhibitory effect followed by acetic acid, propionic acid, and butyric acid. The minimum inhibitory concentration (MIC) of 0.035% formic acid suppressed growth of V. harveyi. The major inhibitory mechanism seems to be the pH effect of organic acids. The effective concentration 50 (EC50) values at 96 h inoculation for all organic acids were determined to be 0.023, 0.041, 0.03, and 0.066% for formic, acetic, propionic, and butyric acid, respectively. The laboratory study results are encouraging to formulate shrimp feeds with organic acids to control vibrio infection in shrimp aquaculture farms.  相似文献   

10.
The mixed cultures which were used were isolated from municipal sludge digesters, and the production of organic acids (acetic, propionic, butyric, etc.) from carbohydrates was tested. The behavior of the reference population (culture R) obtained directly from the sewage treatment plant, is compared to that obtained after three months in a plug-flow reactor (Gradostat fermentor) without pH control (culture A) and after six months with pH control (culture B). For culture B, the specific rate of acid production is related to the cell growth rate by (1/X)rp= 17 µ + 1.6 with a maximal acid concentration of 40 g/liter. The batch culture yields are improved from 0.36g/g for the initial culture (R) to 0.72 g/g for culture B after six months in continuous culture, and 0.8 g/g in plug-flow continuous culture. The productivity of organic acids reaches 1.7 g/liter·hr. It is suggested that the acidogenic fermentation, the first step of methanogenesis, is a potential process to produce acetic, propionic, and butyric acids.  相似文献   

11.
嗜热子囊菌利用短链有机酸生产角质酶   总被引:1,自引:1,他引:0  
以嗜热子囊菌(Thermobifida fusca WSH03-11)发酵生产角质酶为模型,研究微生物利用市政污泥厌氧酸化所产短链有机酸为碳源发酵生产高附加值产品的可能。发现:(1)以丁酸、丙酸和乙酸为碳源时,有机酸和氮元素浓度分别为8.0 g/L和1.5 g/L有利于角质酶的生产;而以乳酸为碳源时,最适有机酸和氮源浓度分别为3.0 g/L和1.0 g/L;(2)改变诱导物角质的浓度,以丁酸、丙酸、乙酸和乳酸为碳源,分别比优化前提高了31.0%、13.3%、43.8%和73.2%;(3)在四种有机酸中,T. fusca WSH03-11利用乙酸的速率最快,平均比消耗速率是丙酸的1.3倍,丁酸的2.0倍及乳酸的2.2倍;以丁酸为碳源时的酶活(52.4 U/mL)是乳酸的1.7倍、乙酸的2.5倍和丙酸的3.2倍;角质酶对乳酸的得率(12.70 u/mg)分别是丁酸的1.4倍、丙酸的3.0倍和乙酸的3.8倍;(4)以混合酸为碳源生产角质酶,T. fusca WSH03-11优先利用乙酸,而对丁酸的利用受到抑制。进一步研究发现,混合酸中0.5 g/L的乙酸将导致丁酸的消耗量降低66.7%。这是首次利用混合酸作碳源发酵生产角质酶的研究报道。这一研究结果进一步确证了利用市政污泥厌氧酸化所产有机酸为碳源发酵生产高附加值产品的可行性,为以廉价碳源生产角质酶奠定了良好的基础。  相似文献   

12.
以嗜热子囊菌(Thermobifida fusca WSH03-11)发酵生产角质酶为模型,研究微生物利用市政污泥厌氧酸化所产短链有机酸为碳源发酵生产高附加值产品的可能。发现:(1)以丁酸、丙酸和乙酸为碳源时,有机酸和氮元素浓度分别为8.0 g/L和1.5 g/L有利于角质酶的生产;而以乳酸为碳源时,最适有机酸和氮源浓度分别为3.0 g/L和1.0 g/L;(2)改变诱导物角质的浓度,以丁酸、丙酸、乙酸和乳酸为碳源,分别比优化前提高了31.0%、13.3%、43.8%和73.2%;(3)在四种有机酸中,T. fusca WSH03-11利用乙酸的速率最快,平均比消耗速率是丙酸的1.3倍,丁酸的2.0倍及乳酸的2.2倍;以丁酸为碳源时的酶活(52.4 U/mL)是乳酸的1.7倍、乙酸的2.5倍和丙酸的3.2倍;角质酶对乳酸的得率(12.70 u/mg)分别是丁酸的1.4倍、丙酸的3.0倍和乙酸的3.8倍;(4)以混合酸为碳源生产角质酶,T. fusca WSH03-11优先利用乙酸,而对丁酸的利用受到抑制。进一步研究发现,混合酸中0.5 g/L的乙酸将导致丁酸的消耗量降低66.7%。这是首次利用混合酸作碳源发酵生产角质酶的研究报道。这一研究结果进一步确证了利用市政污泥厌氧酸化所产有机酸为碳源发酵生产高附加值产品的可行性,为以廉价碳源生产角质酶奠定了良好的基础。  相似文献   

13.
Solid-phase growth of Bacillus subtilis 8130 on cellulose-rich plant substrates (presscakes or pulp) under hypoxic conditions was accompanied by cellulose depolymerization, protein hydrolysis, and degradation of other plant components, including some processes of mixed-type carbohydrate fermentation. The bacterial fermentation yielded propionic, butyric, hexanoic acids and butyric acid derivatives. The bacterial metabolism and fermentation degree can be characterized by the proportions of fatty acids in the reaction mixture. The product of sea buckthorn cake fermentation has a good sorption quality.  相似文献   

14.
A radial oxygen loss (ROL) barrier in roots of waterlogging‐tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging‐tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short‐arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.  相似文献   

15.
The adventitious roots of Hordeum marinum grown in stagnant deoxygenated solution contain a barrier to radial O2 loss (ROL) in basal zones, whereas roots of plants grown in aerated solution do not. The present experiments assessed whether induction of the barrier to ROL influences root hydraulic conductivity (Lpr). Wheat (Triticum aestivum) was also studied since, like H. marinum, this species forms aerenchyma in stagnant conditions, but does not form a barrier to ROL. Plants were grown in either aerated or stagnant, deoxygenated nutrient solution for 21-28 d. Root-sleeving O2 electrodes were used to assess patterns of ROL along adventitious roots, and a root-pressure probe and a pressure chamber to measure Lpr for individual adventitious roots and whole root systems, respectively. Lpr, measured under a hydrostatic pressure gradient, was 1.8-fold higher for individual roots, and 5.6-fold higher for whole roots systems, in T. aestivum than H. marinum. However, there was no difference in Lpr between the two species when measured under an osmotic driving force, when water moved from cell to cell rather than apoplastically. Root-zone O2 treatments during growth had no effect on Lpr for either species (measured in aerobic solution). It is concluded that induction of the barrier to ROL in H. marinum did not significantly affect the hydraulic conductivity of either individual adventitious roots or of the whole root system.  相似文献   

16.
Phytotoxicity originating from the anaerobic decomposition of couch grass rhizomes has been studied. Short chain aliphatic (acetic, propionic and butyric) acids appear to be mainly responsible but hexanoic, succinic, phenylacetic, cinnamic, p-coumaric, 4-hydroxyphenylpropionic and 3,4-dihydroxyphenylpropionic acids are also present in the phytotoxic solutions formed during the decomposition.  相似文献   

17.
The quantity of organic acids ( lactic acid, acetic acid, propionic acid and butyric acid ) in the content of the gastrointestinal tract of germ-free and conventional rats and the invitro effects of the organic acid on the motility of the gastrointestinal tract of rats were investigated.Organic acids were detected only in the gastrointestinal contents of conventional rats but not in those of germ-free rats.Lactic acid detected in the stomach of rats stimulated the motility of both small and large bowel while acetic acid, propionic acid and butyric acid found in the cecum stimulated the motility of the large bowel but not of small bowel.  相似文献   

18.
Internal transport of gases is crucial for vascular plants inhabiting aquatic, wetland or flood‐prone environments. Diffusivity of gases in water is approximately 10 000 times slower than in air; thus direct exchange of gases between submerged tissues and the environment is strongly impeded. Aerenchyma provides a low‐resistance internal pathway for gas transport between shoot and root extremities. By this pathway, O2 is supplied to the roots and rhizosphere, while CO2, ethylene, and methane move from the soil to the shoots and atmosphere. Diffusion is the mechanism by which gases move within roots of all plant species, but significant pressurized through‐flow occurs in stems and rhizomes of several emergent and floating‐leaved wetland plants. Through‐flows can raise O2 concentrations in the rhizomes close to ambient levels. In general, rates of flow are determined by plant characteristics such as capacity to generate positive pressures in shoot tissues, and resistance to flow in the aerenchyma, as well as environmental conditions affecting leaf‐to‐air gradients in humidity and temperature. O2 diffusion in roots is influenced by anatomical, morphological and physiological characteristics, and environmental conditions. Roots of many (but not all) wetland species contain large volumes of aerenchyma (e.g. root porosity can reach 55%), while a barrier impermeable to radial O2 loss (ROL) often occurs in basal zones. These traits act synergistically to enhance the amount of O2 diffusing to the root apex and enable the development of an aerobic rhizosphere around the root tip, which enhances root penetration into anaerobic substrates. The barrier to ROL in roots of some species is induced by growth in stagnant conditions, whereas it is constitutive in others. An inducible change in the resistance to O2 across the hypodermis/exodermis is hypothesized to be of adaptive significance to plants inhabiting transiently waterlogged soils. Knowledge on the anatomical basis of the barrier to ROL in various species is scant. Nevertheless, it has been suggested that the barrier may also impede influx of: (i) soil‐derived gases, such as CO2, methane, and ethylene; (ii) potentially toxic substances (e.g. reduced metal ions) often present in waterlogged soils; and (iii) nutrients and water. Lateral roots, that remain permeable to O2, may be the main surface for exchange of substances between the roots and rhizosphere in wetland species. Further work is required to determine whether diversity in structure and function in roots of wetland species can be related to various niche habitats.  相似文献   

19.
BACKGROUND AND AIMS: Rain-fed lowland rice commonly encounters stresses from fluctuating water regimes and nutrient deficiency. Roots have to acquire both oxygen and nutrients under adverse conditions while also acclimating to changes in soil-water regime. This study assessed responses of rice roots to low phosphorus supply in aerated and stagnant nutrient solution. METHODS: Rice (Oryza sativa 'Amaroo') was grown in aerated solution with high P (200 micro m) for 14 d, then transferred to high or low (1.6 micro m) P supply in aerated or stagnant solution for up to 8 d. KEY RESULTS: After only 1 d in stagnant conditions, root radial oxygen loss (ROL) had decreased by 90 % in subapical zones, whereas near the tip ROL was maintained. After 4 d in stagnant conditions, maximum root length was 11 % less, and after 8 d, shoot growth was 25 % less, compared with plants in aerated solution. The plants in stagnant solution had up to 19 % more adventitious roots, 24 % greater root porosity and 26 % higher root/shoot ratio. Rice in low P supply had fewer tillers in both stagnant and aerated conditions. After 1-2 d in stagnant solution, relative P uptake declined, especially at low P supply. Aerated roots at low P supply maintained relative P uptake for 4 d, after which uptake decreased to the same levels as in stagnant solution. CONCLUSIONS: Roots responded rapidly to oxygen deficiency with decreased ROL in subapical zones within 1-2 d, indicating induction of a barrier to ROL, and these changes in ROL occurred at least 2 d before any changes in root morphology, porosity or anatomy were evident. Relative P uptake also decreased under oxygen deficiency, showing that a sudden decline in root-zone oxygen adversely affects P nutrition of rice.  相似文献   

20.
Previous work has shown that undissociated forms of organic acids, such as formic, acetic, and propionic acids, increase the permeability of barley roots to ions. The work here was undertaken to test whether these undissociated acids affect the lipids from the root membranes in such a way as to account for the permeability increase. Relative amounts of the principal fatty acids from barley root membranes were measured as a function of organic acid concentration, pH, and time of treatment of barley roots under conditions similar to those of the previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号