首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
石榴(Punica granatum)是一种栽培历史悠久且营养价值很高的水果, 我国已形成了河南荥阳和开封、陕西临潼、山东枣庄、安徽怀远、四川会理、云南蒙自和新疆叶城8大石榴主产区。迄今为止, 从石榴果汁、果皮和叶片中共检测出类黄酮多达33种, 其中包括6种黄烷醇、1种黄烷酮苷、2种黄酮醇、3种黄酮醇苷、3种黄酮、5种黄酮苷、1种二氢黄酮醇苷、3种花青素苷元和9种花青素苷, 这些化合物在保健食品和医疗应用中具有重要作用。该文对石榴果实、叶片和花瓣中所含类黄酮的组成、含量、检测方法及药理等方面的研究现状进行了综述, 建议今后应加强石榴果实中类黄酮的快速分析、半制备和制备分离、定量分析方法以及种质资源评价、叶和花中的活性成分鉴定等方面的研究, 以促进对石榴活性成分及其功能的深入研究和利用。  相似文献   

2.
为探索杂交兰花艺突变体变异的分子机理,该研究以杂交兰‘玉凤’及其花艺突变体‘双艺金龙’为材料,利用靶向代谢组学和转录组学鉴定两者中类黄酮化合物含量差异及其相关通路上的差异表达基因。结果表明:(1)代谢组分析发现,杂交兰‘玉凤’和‘双艺金龙’花瓣中共检测到271种类黄酮代谢物,其中黄酮醇类和黄酮类代谢物的相对含量约占总类黄酮的30%~50%;共检测到38个差异代谢物(15个上调,23个下调);‘玉凤’中差异最高的代谢物二氢山奈酚-7-O-葡萄糖苷(黄酮醇类)含量是‘双艺金龙’的124 444倍,‘双艺金龙’中差异最高的代谢物3,5,7,3′,4′-五羟基-5′-异戊二烯基黄酮(黄酮醇类)含量是‘玉凤’的7 244倍。(2)KEGG分析显示,差异代谢物显著富集在类黄酮、黄酮和黄酮醇生物合成途径。其中,在类黄酮生物合成途径上,根皮苷、黄腐醇、二氢山奈酚、二氢杨梅素和表没食子儿茶素含量升高,柚皮苷和二氢槲皮素含量降低;在黄酮和黄酮醇生物合成途径上,三叶豆苷和槲皮素含量均下降。(3)转录组分析共筛选到563个差异表达基因,与‘玉凤’相比,‘双艺金龙’中有220(39.1%)个基因上调表达,343...  相似文献   

3.
以小苍兰(Freesia refracta)16个不同花色品种及后代为试验材料,对花瓣色素用特征显色反应和紫外-可见光谱扫描,分析其色素的成分和花色素苷的稳定性.结果表明,小苍兰花色的色素属于类黄酮化合物,含黄酮和花色素苷类物质,可能含有异黄酮,不含黄酮醇、二氢黄酮、二氢黄酮醇、查耳酮和橙酮,其中黄色系品种及后代还含有类胡萝卜素.避光下小苍兰花色素苷的稳定性要强于光照;温度对花瓣色素的稳定性有一定的影响.  相似文献   

4.
利用超高效液相色谱质谱联用(I-Class UPLC/Xevo TQ MS)技术, 对50个品种荷花干燥花粉中的类黄酮代谢产物进行了分离及结构鉴定。结果表明, 在荷花(Nelumbo nucifera)花粉中检测到了13种黄酮醇和2种黄酮, 这15种类黄酮化合物均为首次从荷花花粉中检出, 其中槲皮素3-O-葡萄糖醛酸苷(quercetin 3-O-glucuronide)、槲皮素3-O-新橙皮糖苷(quercetin 3-O-rhamnopyranosyl-(1→2)-glucopyranoside)以及槲皮素3-O-阿拉伯糖-(1→2)-半乳糖苷(quercetin 3-O-arabinopy- ranosyl-(1→2)- galactopyranoside)含量较高, 且在所有品种中均有检出。不同品种花粉中检测到的类黄酮总含量(TF)差异较大, 绯云千叶类黄酮总含量最高, 为281.08 mg∙100 g-1; 仙女散花最低, 仅为82.64 mg∙100 g-1。通过聚类分析, 将50个品种聚为4组, B组类黄酮化合物种类最多, 而且该组总类黄酮含量最高, 其中绯云千叶、伯里小姐和蜀红莲的干燥花粉中总类黄酮含量均超过200 mg∙100 g-1, 可推荐为采集荷花花粉用的优良品种。  相似文献   

5.
采用高效液相色谱分离、串联四极杆-飞行时间质谱正离子模式检测‘红肉脐橙’和‘清家脐橙’果实黄皮层、白皮层、囊衣和汁胞中的主要类黄酮。根据保留时间、精确质荷比、二级质谱以及标准品化合物验证,确定了脐橙不同组织中含量较高的甜橙黄酮、川陈皮素等13种类黄酮。依据峰面积比较相对含量,认为脐橙黄皮层中类黄酮含量丰富,白皮层和囊衣中类黄酮含量次之,汁胞中类黄酮相对含量较少。黄皮层中以甜橙黄酮、川陈皮素和橘皮素等多甲氧基黄酮为主,而白皮层、囊衣和汁胞中的类黄酮以橙皮苷、柚皮苷为主。脐橙相同组织如白皮层、囊衣和汁胞中类黄酮的相对含量在品种间无显著差异,但橙皮苷、3,5,6,7,3',4'-六甲氧基黄酮和橘皮素在两品种的黄皮层中相对含量差异显著。研究结果为进一步研究和综合利用脐橙的活性物质提供了科学依据。  相似文献   

6.
采用高效液相色谱分离、串联四极杆-飞行时间质谱正离子模式检测‘红肉脐橙’和‘清家脐橙’果实黄皮层、白皮层、囊衣和汁胞中的主要类黄酮。根据保留时间、精确质荷比、二级质谱以及标准品化合物验证,确定了脐橙不同组织中含量较高的甜橙黄酮、川陈皮素等13种类黄酮。依据峰面积比较相对含量,认为脐橙黄皮层中类黄酮含量丰富,白皮层和囊衣中类黄酮含量次之,汁胞中类黄酮相对含量较少。黄皮层中以甜橙黄酮、川陈皮素和橘皮素等多甲氧基黄酮为主,而白皮层、囊衣和汁胞中的类黄酮以橙皮苷、柚皮苷为主。脐橙相同组织如白皮层、囊衣和汁胞中类黄酮的相对含量在品种间无显著差异,但橙皮苷、3,5,6,7,3’,4’-六甲氧基黄酮和橘皮素在两品种的黄皮层中相对含量差异显著。研究结果为进一步研究和综合利用脐橙的活性物质提供了科学依据。  相似文献   

7.
该研究采用RACE扩增技术克隆了一个紫花苜蓿UV-B光受体基因(MsUVR8),在生物信息学分析基础上,采用农杆菌介导法获得了该基因过表达愈伤组织,并对UV-B辐射处理后MsUVR8过表达愈伤组织及其野生型中的类黄酮、黄酮醇、花青素、过氧化氢(H_(2)O_(2))、超氧阴离子(O_(2)^(-·))含量以及UV-B信号通路相关基因的表达进行检测分析,以探讨MsUVR8基因的生物学功能,为揭示植物响应UV-B胁迫的分子机制奠定理论基础。结果表明:(1)成功克隆获得紫花苜蓿MsUVR8基因CDS序列834 bp,且MsUVR8与蒺藜苜蓿MtUVR8基因序列相似度高达95%以上;MsUVR8蛋白形成了不完整的β-折叠结构,系统发育分析显示其与鹰嘴豆属于同一分支。(2)对MsUVR8过表达系检测发现,紫花苜蓿MsUVR8过表达愈伤组织(UVR8-OE)中类黄酮含量较野生型愈伤组织(WT)明显升高,而且经UV-B辐射后的UVR8-OE类黄酮物质含量较WT进一步显著升高。(3)DPBA荧光标记实验发现,UV-B辐射大大促进了细胞中黄酮醇的合成,且UV-B辐射后的UVR8-OE中黄酮醇含量最高。(4)DAB和NBT染色显示,UV-B处理后WT中活性氧(H_(2)O_(2)和O_(2)^(-·))的积累增加,而在UV-B辐射处理与未处理的UVR8-OE中H_(2)O_(2)和O_(2)^(-·)的积累无明显差异,表明MsUVR8可增强植物组织细胞的抗氧化性能,并可降低UV-B胁迫引起的氧化损伤。(5)UV-B辐照后,WT中PAL、CHS和FLS表达被激活而显著提高,UVR8-OE中的4种基因表达均达到最大,且较其他3个处理组均显著增强。研究认为,紫花苜蓿MsUVR8被UV-B激活后,促进了类黄酮合成相关基因的表达,并激活了类黄酮合成关键酶的活性,从而提高了类黄酮物质的合成效率,增强了UV-B胁迫条件下植物愈伤组织的抗氧化能力。  相似文献   

8.
唐古特白刺(Nitraria tangutorum Bobr.)是一种具有药用、食用和饲用价值的荒漠植物,主要分布于我国西北干旱半干旱地区。白刺被誉为沙漠樱桃,含有多种营养物质,还富含黄酮、生物碱等多种药用成分,因此人们对其药用成分、含量、功效及药理展开了一系列研究。本文对现有唐古特白刺黄酮类物质相关的研究进行了调研,首先对唐古特白刺中已分离出的黄酮类物质进行分类,其次对唐古特白刺主要组织中总黄酮含量进行整理和分析,另外对唐古特白刺中各种黄酮化合物的含量进行分析,最后对唐古特白刺中总黄酮、各类黄酮、黄酮单体化合物的药效及药理进行综述。通过对上述内容的整理和分析,总结出白刺黄酮类物质药用研究中存在的一系列问题,并基于此提出解决现有问题的思路并对未来白刺黄酮药用研究提出建议,以期为唐古特白刺植物黄酮类物质药用研究和开发提供理论参考,推动中医药行业的发展。  相似文献   

9.
目的:验证葛根抗腹泻的药效组分,为葛根的质量评价提供科学数据。方法:在经方葛根芩连汤的基础上分析葛根抗腹泻的药效组分,采用组合药理实验辅助验证药效组分。结果:抗腹泻相关实验中葛根水煎液中、高剂量组、葛根药效组分组、葛根芩连汤组与阴性对照组比较均有显著性差异(P0.01)。结论:葛根素-大豆苷-大豆苷元-3'-羟基葛根素是葛根抗腹泻的药效组分。  相似文献   

10.
为了解柠檬香茅(Cymbopogon citratu)中类黄酮及其合成酶基因信息,以阳光直射及遮阴环境下生长的柠檬香茅嫩叶为材料,进行代谢组、转录组结合qRT-PCR验证分析。结果表明,柠檬香茅中含有11类共69种黄酮化合物,其中芦丁、去甲基托罗沙黄酮、紫云英苷及葡萄糖醇等类黄酮化合物在遮阴环境下相对含量显著降低;类黄酮生物合成涉及10类酶54个基因,其中类黄酮3''羟化酶(c99177.1)等4个酶基因在遮阴环境下相对表达量显著降低,而异黄酮合成酶(c51975.0)等6个酶基因相对表达量正好相反;其中5个类黄酮合成酶基因在光照及遮阴柠檬香茅中的上下调表达趋势与转录组测序结果中FPKM值变化一致,而二者检测结果中差异表达倍数存在差异。遮阴使柠檬香茅中大多黄酮类化合物相对含量降低,而其合成酶基因上下调表达趋势规律不明显。  相似文献   

11.
Flavonoids in nine tissues of Nelumbo nucifera Gaertner were identified and quantified by high-performance liquid chromatography with diode array detector (HPLC-DAD) and HPLC-electrospray ionization-mass spectrometry (HPLC-ESI-MSn). Thirty-eight flavonoids were identified; eleven C-glycosides and five O-glycosides were discovered for the first time in N. nucifera. Most importantly, the C-glycosyl apigenin or luteolin detected in lotus plumules proved valuable for deep elucidation of flavonoid composition in lotus tissues and for further utilization as functional tea and medicine materials. Lotus leaves possessed the significantly highest amount of flavonoids (2.06E3±0.08 mg 100 g−1 FW) and separating and purifying the bioactive compound, quercetin 3-O-glucuronide, from leaves showed great potential. In contrast, flavonoids in flower stalks, seed coats and kernels were extremely low. Simultaneously, the optimal picking time was confirmed by comparing the compound contents in five developmental phases. Finally, we proposed the putative flavonoid biosynthesis pathway in N. nucifera.  相似文献   

12.
A validated HPLC-DAD-ESI-MSn method for the analysis of non-anthocyanin flavonoids was applied to nine different tissues of twelve lotus genotypes of Nelumbo nucifera and N. lutea, together with an optimized anthocyanin extraction and separation protocol for lotus petals. A total of five anthocyanins and twenty non-anthocyanin flavonoids was identified and quantified. Flavonoid contents and compositions varied with cultivar and tissue and were used as a basis to divide tissues into three groups characterized by kaempferol and quercetin derivatives. Influences on flower petal coloration were investigated by principal components analyses. High contents of kaempferol glycosides were detected in the petals of N. nucifera while high quercetin glycoside concentrations occurred in N. lutea. Based on these results, biosynthetic pathways leading to specific compounds in lotus tissues are deduced through metabolomic analysis of different genotypes and tissues and correlations among flavonoid compounds.  相似文献   

13.
Lipophilic and vacuolar flavonoids were separately identified in representative temperate species of the genera Anthemis, Chrysanthemum, Cotula, Ismelia, Leucanthemum and Tripleurospermum. The four Anthemis species investigated variously produced four main surface constituents, in leaf and flower: santin, quercetagetin 3,6,3′-trimethyl ether, scutellarein 6,4′-dimethyl ether and 6-hydroxyluteolin 6,3′-dimethyl ether. By contrast, surface extracts of disc and ray florets of the species of Chrysanthemum, Cotula, Ismelia, Leucanthemum and Tripleurospermum surveyed yielded five common flavones in the free state: apigenin, luteolin, acacetin, apigenin 7-methyl ether and chrysoeriol. Polar flavonoids were isolated and identified in leaf, ray floret and disc floret of all the above plants. Anthemis species were distinctive in having flavonol glycosides in the leaves, whereas the leaf flavonoids of the other taxa were generally flavone O-glycosides. The 3-glucoside and 3-rutinoside of patuletin were characterised for the first time from Anthemis tinctoria ssp. subtinctoria. Two new flavonol glycosides, the 5-glucuronides of quercetin and kaempferol, were obtained from the leaf of Leucanthemum vulgare, where they co-occur with the related 5-glucosides and with several flavone glycosides. The ray florets of these Anthemideae generally contain apigenin and/or luteolin 7-glucoside and 7-glucuronide, whereas disc florets have additional flavonol glycosides, notably the 7-glucosides of quercetin and patuletin and the 7-glucuronide of quercetin. A comparison of the flavonoid pattern encountered here with those previously recorded for Tanacetum indicate some chemical affinity between Anthemis and Tanacetum. Flavonoid patterns of the other five genera are more distinct from those of Tanacetum and suggest that those genera form a related group. All 14 species surveyed for their flavonoid profiles have distinctive constituents and the chemical data are in harmony with modern taxonomic treatments of the “Chrysanthemum complex” as a series of separate genera.  相似文献   

14.
Three new flavonol triglycosides quercetin, kaempferol and isorhamnetin 3-rhamnosyl(1----2)galactoside-7-glucosides have been isolated from leaves and stems of Blackstonia perfoliata. This species together with three other genera of the tribe Gentianeae, subtribe Chlorae: Centaurium, Coutoubea and Eustoma, is unusual in producing flavonol glycosides instead of C-glycosyl flavones, the more characteristic flavonoid constituents of the Gentianaceae.  相似文献   

15.
Analysis of the flavonoid content of seed and root exudates of Lotus pedunculatus was undertaken using multiple coupled analytical techniques: capillary zone electrophoresis coupled to a UV spectral array detector (CZE-UV), high performance thin-layer chromatography with densitometry (HPTLC-UV) and gas chromatography with mass spectrometry (GC-MS). These procedures provided separation, identification and structural confirmation of the previously unidentified flavonoids in this plant's seed and root exudates and were particularly applicable to samples from a small seeded legume. Catechin, naringenin, kaempferol, quercetin aglycone and 3 different glycosides of quercetin were detected in seed exudate. Sterile root exudates contained catechin, naringenin and quercetin in addition to apigenin, kaempferol and other flavones and flavanones for which partial identifications were obtained. When sterile root exudate was incubated with Mesorhizobium loti , changes in its flavonoid content were detected. Analysis of bacterial cells after incubation revealed the presence of quercetin, kaempferol and one other flavone. The monocyclic aromatics protocatechuic acid and phloroglucinol were detected in both the incubated root exudate and its bacterial cells.  相似文献   

16.
为了探索同时测定荷叶茶及饮片中6种黄酮类成分(芦丁、金丝桃苷、紫云英苷、槲皮素、山奈素和异鼠李素)含量的方法,本研究以8种不同的荷叶样本为材料,采用高效液相色谱分析法对6种黄酮类成分进行了同时测定。样品经过前处理,以0.5%甲酸-水(A)和0.1%甲酸-乙腈(B)作为流动相进行梯度洗脱,流速为1mL/min,柱温为25℃,进样量为20μL,经Agilent TC-C18(2)(150mm×4.6mm,5μm)色谱柱分离,于360nm波长处检测,结果显示,芦丁、金丝桃苷、紫云英苷、槲皮素、山奈酚、异鼠李素6种黄酮类成分分别在1.6~160、1.8~180、2.16~216、1.4~140、2.12~212、1.6~160μg/mL浓度范围内有良好的线性关系(R20.9992),其检测稳定性、重复性、日内精密度、日间精密度以及加样回收率的RSD均小于2%。进一步用该方法对不同来源的8个荷叶样本进行检测,结果显示荷叶样本中6种黄酮类成分含量以槲皮素最高,并且以样本G荷叶茶(购自G公司,批号为130802)的槲皮素含量最高。本研究建立的同时测定6种荷叶黄酮类成分含量的方法快速、准确,可为荷叶有效成分的检测和质量控制提供技术支撑。  相似文献   

17.
A survey of flavonoids in sixteen of the seventeen taxa in the genusPerideridia (Umbelliferae) showed the presence of thirteen glycosides of the flavonols kaempferol, quercetin, and isorhamnetin, and seven glycosides of the flavones apigenin, luteolin and chrysoeriol. An anthocyanin and four other flavonoids also occur, but remain unidentified dueto their low concentration. Several species characteristically produce speciesspecific compounds. The majority of species, however, produce flavonoids common to one or more taxa, but each taxon can be distinguished by its own specific complement of these flavonoids. Based on classes of flavonoids the genus can be divided into three groups: (1) those species which produce only flavonols; (2) those which produce mainly flavonols and a few flavones; and (3) those which produce predominantly flavones with flavonols absent or present only in trace amounts. Geographically, the flavonol-producing species are centered in California, extending northeastward to Idaho and eastward into Arizona. The flavonol/flavone producers are concentrated more towards the Pacific Northwest and eastward through the Rocky Mountains to the midwestern United States.  相似文献   

18.
A survey of flavonoids in the leaves of 81 species of the Zingiberales showed that, while most of the major classes of flavonoid are represented in the order, only two families, the Zingiberaceae and Marantaceae are rich in these constituents. In the Musaceae (in 9 species), Strelitziaceae (in 8 species) and Cannaceae (1 of 2 species) flavonol glycosides were detected in small amount and in the Lowiaceae no flavonoids were fully identified. In the Zingiberaceae kaempferol (in 22%), quercetin (72%) and proanthocyanidins (71%) are distributed throughout the family. The two subfamilies of the Zingiberaceae may be distinguished by the presence of myricetin (in 26%), isorhamnetin (10%) and syringetin (3%) in the Zingiberoideae and of flavone C-glycosides (in 86% of taxa) in the Costoideae. A number of genera have distinctive flavonol profiles: e.g. Hedychium species have myricetin and quercetin. Roscoea species isorhamnetin and quercetin and Alpinia species kaempferol and quercetin glycosides. A new glycoside, syringetin 3-rhamnoside was identified in Hedychium stenopetalum. In the Zingiberoideae flavonols were found in glycosidic combination with glucuronic acid, rhamnose and glucose but glucuronides were not detected in the Costoideae or elsewhere in the Zingiberales. The Marantaceae is chemically the most diverse group and may be distinguished from other members of the Zingiberales by the occurrence of both flavone O- and C-glycosides and the absence of kaempferol and isorhamnetin glycosides. The distribution of flavonoid constituents within the Marantaceae does not closely follow the existing tribai or generic limits. Flavonols (in 50% of species). flavones (20%) and flavone C-glycosides (40%) are found with similar frequency in the two tribes and in the genera Calathea and Maranta both flavone and flavonol glycosides occur. Apigenin- and luteolin-7-sulphates and luteolin-7,3′-disulphate were identified in Maranta bicolor and M. leuconeura var. kerchoveana and several flavone C-glycosides sulphates in Stromanthe sanguinea. Anthocyanins were identified in those species with pigmented leaves or stems and a common pattern based on cyanidin-and delphinidin-3-rutinosides was observed throughout the group. Finally the possible relationship of the Zingiberales to the Commelinales, Liliales, Bromeliales and Fluviales is discussed.  相似文献   

19.
Increased flavonoid concentrations were found to correlate with the elevated levels of leaf phenolic compounds occurring in blight-induced zinc-deficient citrus. In orange (Citrus sinensis L.) leaves, the increases occurred primarily in hesperidin and diosmin, whereas in grapefruit (C. paradisi Macf.) the largest increases occurred in naringin and rhoifolin. Zinc-deficiency occurring in the blighted citrus leaves appeared to be the important contributing factor to the increased flavonoid content. Although the leaves from trees with blight were typically smaller than leaves from unaffected trees, the increased flavonoid content was not significantly due to a concentration effect. Large differences occurred in the percent increases in concentrations of certain citrus leaf flavonoids. While large increases occurred for a number of flavanone and flavone glycosides, much smaller percent increases occurred for other minor flavone glycosides, and the polymethoxyflavone aglycones. The parallel increases occurring in the concentrations of certain flavone glycosides and their flavanone analogs provide a further indication that flavanone glycosides are precursors in the biosynthesis of flavone glycosides in citrus.  相似文献   

20.
Leaves of 97 taxa representing all the genera at present recognized in the family Oleaceae were surveyed for flavonoids. Four flavonol glycosides were found to be common, the 3-glucmides and 3-rutinosides of quercetin and kaempferol, as were four flavone glycosides, namely the 7-glurosides arid 7-rutinosides of luteolin and apigenin. Among rarer constituents detected were luteolin 4'-glucoside, eriodictyol 7-glucoside, chrysoeriol 7-glucoside, an apigenin-di-C-glycoside and several higher glycosides of quercetin. The species and genera surveyed fell into two groups: those with flavonol glycosides alone; and those with both flavonol and flavone glycosides. The most striking correlation was with chromosome number (and subfamily division) since almost all taxa with a basic number of 11, 13 and 14 had only flavonol glycosides, whereas most taxa with x = 23 had both types of flavonoid. Evolutionary advancement in the family appears to involve the gradual replacement of flavonol by flavone glycosides. Indeed, a few tam, notably Nestegis apelala, Picconia excelsa and Tesserandra fluminense , lacked flavonol glycosides in the leaves completely. At the lower levels of classification, the distribution of flavonoids is of less interest. However, the patterns in Linociera and Chionanthus , two taxa recently made congeneric, are sufficiently different to suggest that this decision might have to be reconsidered when more is known of their chemistry. Otherwise leaf patterns generally fit in with the existing generic classification in the family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号