首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 289 毫秒
1.
粗糙沼虾精巢发育的组织学   总被引:1,自引:1,他引:0  
利用光镜技术,对粗糙沼虾精巢发育进行了研究,根据精子发生过程中每种生殖细胞所占的比例和发生的次序,并结合精巢的形态特征,把精巢发育过程分为五个时期,即精原细胞期,精母细胞期,精细胞期,成熟精子期及退化期,精原细胞期,精巢小,透明乳白色,生精小管内的生殖细胞以精原细胞为主;精母细胞期;精巢体积增大,半透明乳白色,主要由处于初级精母细胞的次级精母细胞阶段的生殖细胞组成;精细胞期,精巢体积继续增大,颜色加深,生精小管内的生殖细胞以精细胞为主;成熟精子期,精巢体积可达最大,紫红色,生精小管内充满着成熟的精子,退化期;精巢体积减小,半透明乳白色,生精小管内的成熟精子几乎排空。  相似文献   

2.
黄鳝性腺自然逆转过程中vasa基因的表达分析   总被引:9,自引:0,他引:9  
本研究采用RNA反义探针原位杂交技术,对vasa基因在黄鳝(Monopterusalbus)性腺发育过程中的表达情况进行了分析。结果表明:vasamRNA在Ⅰ、Ⅱ、Ⅲ期卵母细胞的胞质中均匀分布,在Ⅳ、Ⅴ期卵母细胞中vasamRNA有向胞质外周皮层迁移集中的趋势,但不明显;退化的卵粒也呈现vasamRNA阳性反应;在Ⅲ、Ⅳ期卵巢的被膜中检测到带有vasa阳性信号的细胞,这些细胞可能是待向精原细胞分化、迁移到卵巢被膜上的原始生殖细胞(Primordialgermcell,PGC),在性逆转过程中这些PGC可能由卵巢被膜迁移到精小叶中并发育成精子;在成熟精巢中,vasa在精原细胞和初级精母细胞中表达。进一步采用碱性磷酸酶染色法分析黄鳝卵巢及精巢后发现:在卵巢中,除了卵母细胞外,卵巢被膜中也检测到了带有碱性磷酸酶阳性信号的细胞;在成熟精巢中,只在生殖腺囊内的雄性生殖细胞中检测到碱性磷酸酶,而精巢被膜中没有检测到带有碱性磷酸酶阳性信号的细胞。本研究结果初步表明:黄鳝的雄性生殖细胞可能起源于雌性阶段卵巢被膜中的原始生殖细胞[动物学报51(3):469-475,2005]。  相似文献   

3.
用抗人LH和hCG特异性抗体对原索动物神经系统、哈氏窝和性腺进行了免疫细胞化学定位。结果表明,文昌鱼脑泡和神经管中有两种不同LH-和hCG-样免疫反应阳性细胞,而皱瘤海鞘神经节对LH和hCG抗体则显免疫阴性反应。同时,首次发现在原索动物性腺(卵巢和精巢)发育早期均存在LH-和hCG-样免疫反应阳性细胞,阳性物分布在原索动物卵原细胞的胞质、核质和核仁膜以及精巢中早期生精细胞。后来,随卵巢发育和成熟,这些阳性物仍分布在卵母细胞质膜、胞质、核膜和核质上,而精巢中精细胞和精子则显免疫阴性。这些结果可为LH和hCG直接参与调节原索动物性腺发育和成熟提供形态学的新证据。  相似文献   

4.
长期以来,雌激素(Estrogen)被认为是雌性特有的维持雌性性征的激素。近年来人们发现雄性体内亦存在雌激素及其受体,雌激素可作用于脊椎动物下丘脑-垂体-精巢调控轴以及精巢中体细胞和生精细胞,包括Sertoli细胞、Leydig细胞、精细胞,几乎涉及所有雄激素涉及的领域。雌激素通过与其受体结合而起作用,雌激素受体(Estrogen receptor,ER)在雄性生殖中起重要作用。  相似文献   

5.
VEGF、VEGFR2在青春期大鼠睾丸、附睾及附睾精子上的表达   总被引:2,自引:0,他引:2  
目的通过对血管内皮生长因子(VEGF)及其受体VEGFR2在青春期大鼠睾丸及附睾表达的研究,探讨其在雄性生殖器官中的作用。方法采用免疫组化法检测VEGF、VEGFR2在SD大鼠睾丸和附睾的表达定位,用免疫荧光法检测它们在大鼠附睾精子上的表达定位。结果VEGF及VEGFR2在青春期大鼠睾丸和附睾组织中均有表达。在睾丸中,VEGF主要表达于精原细胞胞质、精子细胞发育中的顶体、Sertoli细胞胞质及精子残余体内,Leydig细胞胞质也有阳性表达;VEGFR2主要表达于精子细胞发育中的顶体和间质细胞胞质。在附睾中,VEGF表达于附睾管上皮所有主细胞胞质内;而VEGFR2表达于附睾管头段和尾段上皮主细胞胞质内,体段免疫染色阴性。免疫荧光显示,VEGF与VEGFR2都与精子头部顶体、尾部颈段、中段和主段相结合,末段未见阳性荧光。结论VEGF及VEGFR2在大鼠的睾丸和附睾中均有表达,其表达定位具有细胞特异性和区域特异性,提示其可能在大鼠睾丸精子发生和附睾精子成熟中发挥重要作用。  相似文献   

6.
研究旨在针对不同性腺发育阶段(Ⅰ期、Ⅱ期、Ⅲ期、Ⅳ期、Ⅴ期)野生瓯江凤鲚(Coiliamystus)性腺发育情况和肌肉营养成分进行分析与评价。研究表明: 在雌、雄野生瓯江凤鲚性腺从Ⅰ期发育至Ⅴ期的过程中, 成熟系数呈现上升趋势, 凤鲚卵巢的GSI值是精巢GSI值的5倍。在卵巢发育Ⅰ—Ⅴ期, 粗脂肪含量显著下降, 粗蛋白和水分显著上升(P<0.05); 在精巢发育Ⅰ—Ⅴ期, 粗脂肪含量显著上升, 粗蛋白和水分显著下降(P<0.05), 灰分含量先升后降, 说明野生瓯江凤鲚在卵巢发育过程中脂肪为主要供能物质。雌凤鲚肌肉在卵巢发育Ⅰ—Ⅴ期显著上升(P<0.05), 雄凤鲚肌肉氨基酸含量在精巢发育Ⅰ—Ⅴ期显著下降(P<0.05)。但各性腺发育阶段氨基酸组成相对稳定, 雌、雄鱼肌肉总必需氨基酸/总氨基酸分别为(37.88±0.32)%—(41.66±0.44)%和(40.30±0.69)%—(40.94±0.29)%。依据氨基酸评分(AAS)和化学评分(CS)标准, 不同性腺发育阶段的野生瓯江雌、雄凤鲚肌肉中第一限制性氨基酸均为色氨酸, 第二限制性氨基酸均为甲硫氨酸(Met)和胱氨酸(Cys)。在卵巢发育Ⅰ—Ⅴ期, 性腺发育阶段含量最丰富的C16﹕0和C18﹕1呈下降趋势, 可能是作为主要的供能脂肪酸。多不饱和脂肪酸的主要脂肪酸DHA在卵巢发育中呈现先上升后下降趋势。在精巢发育Ⅰ—Ⅴ期, 多不饱和脂肪酸呈现下降趋势。因此, 在繁殖过程中, 野生瓯江凤鲚雌雄鱼的发育特征和肌肉营养组成变化规律及差异与生殖洄游产卵的繁殖习性密切相关。  相似文献   

7.
细鳞鱼精巢超微结构和精子发生   总被引:34,自引:2,他引:32  
张旭晨  王所安 《动物学报》1992,38(4):355-358
细鳞鱼Brachymystax lenok(Pallas)精巢为叶型;支持细胞(Sertoli cell)和Leydig细胞具有典型内分泌细胞的一些结构特征;A型精原细胞的细胞器是区域性分布,精原细胞线粒体的发育与拟染色质 (chromatoid bodies)有关;生精细胞(spermatogenic cell)核膜孔由均匀排布最终演变为区域性聚集。重复注射绒毛膜促性腺激素(hCG)可促进雄鱼性成熟;精子质量受到多种因素的影响。  相似文献   

8.
用兔抗人催乳素多克隆抗体和鼠抗人催乳索受体单克隆抗体对文昌鱼神经系统、哈氏窝和其它组织进行免疫组织化学研究。结果显示:催乳素免疫活性细胞及催乳素受体定位在文昌鱼脑泡、神经管、哈氏窝、轮器、内柱、消化管和性腺(卵巢和精巢),表明催乳素在文昌鱼有广泛分布,并且从进化观点来看,证明催乳素是一种高度保守的古老激素。双重免疫染色进一步揭示催乳素及其受体免疫反应阳性物质共存于同一卵母细胞胞膜和胞质以及精巢中精原细胞、初级与次级精母细胞和Sertoli细胞。研究结果首次证明了文昌鱼脑泡和哈氏窝以及其它组织能够合成和分泌催乳素,表明像脊椎动物一样,催乳素可能参与调节文昌鱼体内代谢和对环境的适应以及性腺发育,提示文昌鱼可能出现原始的脑泡-哈氏窝(催乳素)-靶细胞调控轴的雏形。本研究为文昌鱼哈氏窝内分泌学以及催乳素的起源与演化提供新的基础资料。  相似文献   

9.
为了开展中华鲟(Acipenser sinensis)种质资源保存及其精原干细胞体外培养的研究, 采用蛋白酶消化法, 对中华鲟精巢组织细胞进行原代培养, 建立了中华鲟精巢细胞系(Acipenser sinensis testicular cell line, AST), 经352d传代培养, 已稳定传至80代。中华鲟精巢细胞系形态主要呈类纤维状, 培养基为DMEM, 培养温度为25℃, 最适血清浓度为15%。正常传代的AST细胞冻存、复苏后, 经台盼蓝染色, 约(81.36±1.13)%的细胞具有活性, 复苏后细胞仍生长旺盛。染色体核型分析结果显示, 第30代中华鲟精巢细胞系染色体数目分布在142—310, 众数为264。通过RT-PCR检测发现, 在P0和P1细胞中, Sertoli细胞特异表达基因(amh和gsdf)、Leydig细胞特异表达基因(cyp17a1)和生殖细胞特异表达基因(dazl、dnd和vasa)都有表达, 且表达量与精巢中的相似; 在P15、P30和P60细胞中, 只有amh和vasa基因有微弱的表达, 说明细胞系传代到了后期, 只含有极少量的Sertoli细胞和生殖细胞。通过脂质体转染法将pEGFP-N3质粒转入AST细胞中, 可表达增强型绿色荧光蛋白(Enhanced green fluorescent protein, EGFP)。AST细胞系的建立为中华鲟种质资源的保存、精原干细胞的体外增殖与分化、基因功能等研究提供了重要的实验材料。  相似文献   

10.
目的研究血管内皮生长因子(VEGF)及其受体Flt-1蛋白在实验性左侧精索静脉曲张(ELV)大鼠睾丸中的表达和定位,探讨它们在精索静脉曲张(VC)致男性不育中的作用。方法建立青春期大鼠ELV模型,采用免疫组化法检测VEGF及Flt-1在ELV4周、8周组及相应对照组大鼠睾丸中的表达变化。结果 VEGF和Flt-1蛋白在大鼠睾丸中定位具有细胞特异性。VEGF蛋白表达于生精细胞、精子细胞发育中的顶体、Sertoli和Leydig细胞胞质内;Flt-1表达于精子细胞发育中的顶体及Leydig细胞胞质中。ELV4周组睾丸中VEGF蛋白的表达显著增加(P<0.01),8周时其表达量下降(P<0.01);ELV4周组与8周组睾丸中Flt-1蛋白的表达均比相应对照组下降(P<0.01),ELV8周组比4周组显著减少(P<0.01)。结论 ELV可影响青春期大鼠睾丸中VEGF和Flt-1蛋白的表达量,可能会影响精子的发生、发育,因而该变化可能是VC引起男性不育的原因之一。  相似文献   

11.
THE FINE STRUCTURE OF THE RENAL GLOMERULUS OF THE MOUSE   总被引:43,自引:14,他引:29       下载免费PDF全文
  相似文献   

12.
ELECTRON MICROSCOPY OF THE AVIAN RENAL GLOMERULUS   总被引:1,自引:0,他引:1       下载免费PDF全文
Electron microscopy of sections of chicken glomeruli shows them to possess a large central cell mass, occupying the hilum and the centre of the glomerulus, and continuous with the adventitia of the afferent and efferent arterioles. The glomerular capillaries form a much simpler system than in mammals and are spread over the surface of the central cell mass. Between the capillaries the mass is limited externally by the major component of the glomerular capillary basement membrane, which continues over the surface of the mass from one capillary to the next. Projections of the central cell mass characteristically form the support for glomerular capillaries, and smaller knobs of the central mass may project actually into the lumen of the capillaries, but always carry a layer of endothelial cytoplasm before them. They are never in direct contact with blood. The basement membrane of the glomerular capillary loop has a central dense layer and two lateral less dense layers as in mammals. The central dense layer is continuous with similar appearing dense material in the intercellular spaces of the adventitiae of the arterioles, and also with that of the central cell mass. The two less dense layers can also be traced into direct continuity with the less dense regions of this intercellular substance. The endothelial cytoplasm is spread as a thin sheet over the inner surface of the capillary basement membrane, and shows scattered "pores" resembling those described in mammals. Epithelial cells with interlacing pedicels are at least as prominent as those in mammals. Bowman's capsular membrane also possesses three layers similar to but less wide than those of the capillary basement membrane, and all three layers can be traced into continuity with the dark and light regions of the intercellular material of the adventitial cells of the arterioles, and beyond them with that of the central cell mass. At the hilum Bowman's capsular membrane also fuses with the capillary basement membrane.  相似文献   

13.
Epithelial-like Sertoli cells isolated from immature rat testis aggregate to form tubule-like structures when cultured on a monolayer of mesenchyme-derived peritubular cells. At the end of this morphogenetic process both cell types are separated by a basement membrane. In this study the gene expression of monocultures and direct cocultures of peritubular cells and Sertoli cells was examined using DD-RT-PCR. One of the isolated cDNA clones showed high homology to the cDNA encoding the basement membrane component entactin-1 (nidogen-1). Even though the entactin-1 (nidogen-1) gene is transcribed in peritubular cells, Sertoli cells, and in direct cocultures, the mRNA is translated only by the peritubular cells. No entactin-1 (nidogen-1) was detected in the Sertoli cells by Western blotting. Moreover, peritubular cell monocultures and cocultures showed the presence of one single band at 152 kDa in the supernatant, whereas in cell lysates two bands were detectable at 152 kDa and 150 kDa. Perturbation experiments using monoclonal antibodies directed against entactin-1 (nidogen-1) were performed with peritubular cells and Sertoli cells, respectively, and demonstrated loss of cell adhesion of the peritubular cells, while the Sertoli cells remained adherent. From these data we conclude that entactin-1 is exclusively produced and secreted by mesenchymal peritubular cells, and affects adhesion of peritubular cells in an autocrine manner.  相似文献   

14.
用兔抗人ER-α和ER-β多克隆抗体对文昌鱼神经系统、轮器哈氏窝和性腺进行免疫细胞化学的定位研究。结果揭示幼年和成年两性不同发育时期文昌鱼在这些部位分布ER-α和ER-β蛋白。ER-α定位在端脑、中脑、后脑和神经管中大多数神经细胞核,少数在胞质及其突起和神经纤维,ER-β则定位在细胞质或细胞膜上,少数在核内。ER—α免疫阳性物质主要分布在哈氏窝下层的上皮细胞核,少数在上层细胞质,β受体则在上层细胞核。在性腺,ER-α分布在卵巢中卵原细胞和小生长期卵母细胞胞质与核仁,生发泡(核)显免疫阴性,在大生长期卵母细胞核膜和核仁的免疫阳性显著增强,成熟期则在卵细胞生发泡表达,ER-β免疫阳性物质分布在卵原细胞和早期卵母细胞质以及成熟卵细胞的卵被膜检测到,生发泡显免疫阴性。在精巢,这两种ER亚型均定位在精原细胞、初级与次级精母细胞和足细胞质,精子细胞在胞核,精子显免疫阴性。另外,双染结果还揭示ER-α和ER-β在上述部位多数共存于同一细胞,少数在不同细胞表达,且在细胞定位有不同。首次发现这两种雌激素受体亚型在文昌鱼有广泛分布,它们介导雌激素对文昌鱼神经内分泌组织的调节作用。α和β受体在靶细胞定位的不同,提示两者在介导雌激素信号路线和基因转录机制可能有不同生理作用。  相似文献   

15.
Summary In this paper we present evidence for the presence of actin-related junctions between neighboring Sertoli cells and between Sertoli cells and spermatids in the testis of the guppy (Poecilia reticulata). In the guppy, spermatogenesis occurs in spermatocysts that are lined by a simple squamous to cuboidal epithelium formed of Sertoli cells. At a certain stage of differentiation, elongate spermatids occur in Sertoli cell recesses in the apical surface of Sertoli cells. When evaluated by electron microscopy, junctions occur between Sertoli cells and spermatids situated in the recesses. In these regions, obvious linkages occur between the plasma membrane of Sertoli cell recesses and the adjacent spermatids. Moreover, large concentrations of microfilaments occur in the Sertoli cell cytoplasm immediately underlying the crypts. Also, junctional complexes are apparent between neighboring Sertoli cells near the apical surface of the epithelium. These complexes consist of microfilament-related components (probably contributing to both tight and adhesion junctions), which occur closest to the lumen, and intermediate-filament related desmosomes, which occur more basally. In fixed frozen sections of guppy testis, probes for filamentous actin (rhodamine phalloidin) and myosin II (polyclonal antisera raised against human platelet myosin II) react with function regions between neighboring Sertoli cells and between Sertoli cells and spermatids. We conclude that actin-related junctions occur at both these sites and that the actin networks have contractile properties because they contain myosin II.  相似文献   

16.
Tubulobulbar complexes may be part of the mechanism by which intercellular adhesion junctions are internalized by Sertoli cells during sperm release. These complexes develop in regions where Sertoli cells are attached to adjacent cells by intercellular adhesion junctions termed ectoplasmic specializations. At sites where Sertoli cells are attached to spermatid heads, tubulobulbar complexes consist of fingerlike processes of the spermatid plasma membrane, corresponding invaginations of the Sertoli cell plasma membrane, and a surrounding cuff of modified Sertoli cell cytoplasm. At the terminal ends of the complexes occur clusters of vesicles. Here we show that tubulobulbar complexes develop in regions previously occupied by ectoplasmic specializations and that the structures share similar molecular components. In addition, the adhesion molecules nectin 2 and nectin 3, found in the Sertoli cell and spermatid plasma membranes, respectively, are concentrated at the distal ends of tubulobulbar complexes. We also demonstrate that double membrane bounded vesicles are associated with the ends of tubulobulbar complexes and nectin 3 is present on spermatids, but is absent from spermatozoa released from the epithelium. These results are consistent with the conclusion that Sertoli cell and spermatid membrane adhesion domains are internalized together by tubulobulbar complexes. PKCalpha, a kinase associated with endocytosis of adhesion domains in other systems, is concentrated at tubulobulbar complexes, and antibodies to endosomal and lysosomal (LAMP1, SGP1) markers label the cluster of vesicles associated with the ends of tubulobulbar complexes. Our results are consistent with the conclusion that tubulobulbar complexes are involved with the disassembly of ectoplasmic specializations and with the internalization of intercellular membrane adhesion domains during sperm release.  相似文献   

17.
A histochemical, microdensitometric, and electron microscopic study of testes of the ratfish Hydrolagus colliei shows that an instance of the rare phenomenon of germ line chromatin diminution occurs in this vertebrate species. In primary spermatocytes at metaphase I a spherical mass of heterochromatin accumulates at one side of the metaphase plate. At anaphase I the heterochromatic mass is left in the equatorial cytoplasm and is passed into one of the two secondary spermatocytes formed during cytokinesis. As nuclear membranes are being restored, a double membrane envelope is also formed around the heterochromatic mass, which is then termed the ‘chromatin diminution body’ (CDB). At second meiotic division the CDB is included in the cytoplasm of one of the four spermatids and retained there, apparently unchanged, until mid-spermiogenesis. At that time the CDB becomes adherent to the spermatid plasma membrane and is pinched off from the spermatid by a process of apocrine exocytosis, taking a layer of spermatid plasma membrane along with it. Simultaneously this tri-membrane CDB is taken into the adjacent Sertoli cell by endocytosis, thereby acquiring a fourth membrane layer, a part of the Sertoli cell plasma membrane. The CDBs are subsequently phagocytized, possibly first fusing with dense, multilaminate bodies in the Sertoli cell cytoplasm. The CDB chromatin mass is strongly positive with the Feulgen method for DNA and the alkaline fast green method for histones. Microdensitometric analysis shows that the discarded chromatin amounts to about 10% of the diploid nuclear content and that it appears to be part of the normal diploid complement rather than DNA amplified during meiosis.  相似文献   

18.
Basement membranes are thin extracellular matrices which contact epithelial cells and promote their adhesion, migration, differentiation, and morphogenesis. These matrices are composed of collagen IV, heparan sulfate proteoglycan, laminin, and entactin as well as other minor components. Sertoli cells, like most epithelial cells, are in contact at their basal surface with a basement membrane. When cultured within three-dimensional basement membrane gels (Matrigel), Sertoli cells reorganize into cords that resemble testicular seminiferous cords found in the in vivo differentiating testis. Anti-laminin and anti-entactin antisera inhibit this cord morphogenesis by Sertoli cells whereas antisera against type IV and type I collagen, heparan sulfate proteoglycan, fibronectin, and preimmune sera had no effect. The RGD (RGDS-NH2) sequence, found in the cell binding domain of the integrin family of cell adhesion molecules as well as in the A chain of laminin and in entactin, effectively inhibited Sertoli cell cord formation at a concentration of 1.0 mg/ml but was unable to prevent Sertoli cell attachment at concentrations as high as 2.0 mg/ml. A synthetic pentapeptide from a cell-binding domain of the B1 chain of laminin. YIGSR-NH2, inhibited cord formation at a concentration of 0.25 mg/ml, but Sertoli cells were still adherent to the basement membrane matrix. At concentrations greater than 0.50 mg/ml, Sertoli cells detached. Antiserum against the YIGSR-NH2-containing sequence was also effective in inhibiting cord formation by Sertoli cells. Ligand (YIGSR-NH2 peptide) blot analysis of Sertoli cell lysates revealed an interaction with a major band at 60 kDa and with minor bands at 39 and 127 kDa. Furthermore, in Western blot analysis the anti-67-kDa laminin-binding protein antibody recognized a 59- to 60-kDa protein in Sertoli cells. The data indicate that laminin is involved in both Sertoli cell attachment and migration during formation of histotypic cord structures by these cells in culture. Two separate laminin cell-binding domains appear to be involved in Sertoli cell cord morphogenesis in vitro and are likely to participate in the formation of seminiferous cords in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号