首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
采用土培盆栽方法模拟玉米/花生、大麦/花生、燕麦/花生、小麦/花生、高粱/花生5种种植方式,研究混作对花生根系质外体铁的累积和还原力的影响.结果表明,当花生与5种分泌植物铁载体能力不同的禾本科作物混作时,花生新叶叶色正常,而单作花生则表现出严重的缺铁黄化症状,混作花生各部位的含铁量明显增加.与麦类作物(大麦、燕麦、小麦)混作的花生其各部位铁含量高于与玉米、高粱混作的花生,说明麦类作物改善花生铁营养的能力强于玉米、高粱,而两个玉米品种之间的能力差异不大。这主要是由于麦类作物分泌植物铁载体能力高于玉米、高粱.在花生生长至第50、60和70d时,混作花生根系质外体铁含量也随着逐渐增加,并始终高于单作花生.同时,混作明显地提高了花生根际土壤有效铁的含量,花生根系还原力也逐步提高.混作花生逐渐提高的还原力和介质中不断供给的易被花生还原吸收的铁。在改善花生的铁营养方面起了重要的作用.  相似文献   

2.
玉米、小麦与花生间作改善花生铁营养机制的探讨   总被引:15,自引:1,他引:14  
采用土培盆栽方法模拟研究了玉米/花生、小麦/花生间作对花生铁营养状况的影响及其作用机制。结果表明,禾本科作物与花生间作对花生的铁营养状况有显著影响:当花生与玉米或小麦分别间作时,花生新叶叶色正常,而花生单作则表现出严重的缺铁黄化现象,间作花生新叶活性铁、叶绿素含量明显高于单作,两种间作花生各部位铁含量和吸收量明显高于单作,间作明显地促进了铁向花生地上部的转移;在单作花生表现缺铁症状14d的时间范围内,其根系质外体铁含量仅是间作花生的52%~80%;而根系还原力则是单作花生在表现缺铁症状后迅速提高,至缺铁第6d时还原力达到最大值,随后花生根系还原力迅速下降,而间作花生在0~14d内还原力增加速度缓慢,在10~14d中其根系还原力明显地高于单作花生根系还原力。其主要原因可能是禾本科作物玉米、小麦根系分泌物(如:麦根酸类植物铁载体)螯合土壤中难溶性铁并被花生吸收利用。  相似文献   

3.
玉米,小麦与花间作改善花生铁营养机制的探讨   总被引:1,自引:1,他引:0  
左元梅  李晓林 《生态学报》1998,18(5):489-495
采用土培盆栽方法模拟研究了玉米/花生、小麦/花生间作对花生铁营养状况的影响及其作用机制。结果表明,禾本科作物与花生间作对花生的铁营养显著影响;当花生与玉米或小麦分别间作时,花生新叶叶色正常,而花生单作则表现出严重的缺铁花化现象,间作花生新叶活性铁、叶绿素含量明显高单作,途中瞳作花生各部位铁含量和吸收量明显高于单作,间作灶促进了铁向花生地上部的转移;在单作花生表现缺铁症状14d的时间范围内,其根系质  相似文献   

4.
左元梅  刘永秀  张福锁 《生态学报》2004,24(11):2584-2590
研究了石灰性土壤上玉米 (Zea mays L.) /花生 (Arachishypogaea L.)混作改善花生铁营养对花生光合速率、光合产物的运输、花生各部位糖类含量、固氮酶活性以及根瘤内碳氮代谢及其有关酶活性的影响。结果表明 ,玉米 /花生混作改善花生铁营养能够明显增强固氮酶活性 ,进而增加了间作花生根瘤氨基酸的含量 ,这主要是由于玉米 /花生混作改善花生铁营养促进了花生光合作用 ,提高光合产物数量 ,增加光合产物由地上部向地下部的运输 ,但是处理间花生根瘤蔗糖和可溶性糖含量变化不大 ,单作花生根瘤还积累较多淀粉 ,说明不是光合产物的供应导致了花生固氮活性的差异。玉米 /花生混作对花生根瘤碳水化合物代谢水平影响较大 ,混作花生根瘤异柠檬酸脱氢酶 (IDH)、苹果酸脱氢酶 (MDH)、琥珀酸脱氢酶活性明显高于单作 ,而磷酸烯醇丙酮酸羧激 (PEPCK)活性低于单作花生 ,表明混作花生根瘤内三羧酸循环代谢水平较高 ,形成类菌体直接吸收利用的能量物质苹果酸和琥珀酸多 ,能够满足类菌体的固氮需求 ,因此 ,玉米 /花生混作改善花生铁营养增强根瘤碳水化合物代谢水平是提高花生固氮作用的重要原因之一  相似文献   

5.
间作对植株生长及养分吸收和根际环境的影响   总被引:5,自引:1,他引:4  
通过盆栽实验研究了线辣椒和玉米间作对其植株生长、矿质养分吸收、根际环境以及铁载体分泌的影响,以探索间作促进铁、磷等养分吸收利用的可能生理机制.结果表明:(1)与单作相比,间作线辣椒地上部干重降低23.0%,根系干重增加44.2%,玉米地上部和根系的干重分别增加8.7%和22.9%;间作线辣椒根冠比和根系活力分别显著提高86.4%和29.8%;间作线辣椒、玉米叶绿素含量分别显著提高12.6%和7.8%.(2)与单作相比,间作线辣椒的铁、锌、锰含量分别增加1.50倍、1.39倍和1.34%,而间作玉米则无显著变化;间作线辣椒和玉米的钙含量都显著低于相应单作,氮含量没有显著变化,但磷、钾含量显著增加.(3)间作线辣椒和玉米的根际土、非根际土的酸性磷酸酶活性及根系酸性磷酸酶活性都显著高于相应单作,而其根际土和非根际土的pH值无显著变化;间作玉米根系的铁载体分泌比单作减少32.8%,间作线辣椒根系的铁还原酶活性是单作的1.10倍.研究发现,线辣椒/玉米间作能通过影响根际生物学特征和化学过程提高植株的铁、锌、磷和钾养分水平,缓解养分胁迫,是一种很有推广价值的种植模式.  相似文献   

6.
供磷水平对间套作物根系酸性磷酸酶活性的影响   总被引:11,自引:0,他引:11  
选择小麦/大豆和小麦/玉米2种模式,用盆栽法和根系栽培法研究了不同供磷水平对间套作物根系酸性磷酸酶(APase)活性的影响,试验得出:间套种植种植根系Apase的分泌量,套作大表兄弟经单作大豆平均提高35.9%,而小麦和玉米在间套种植时也有不同程度地提高,说明间套种植有利于土壤有机磷向有效化方向转化,大豆不论单作还是间套作其根系APase都远高于相应小麦,而小麦又高于玉米,说明大豆利用土壤的潜在的能力大于小麦,而小麦又高于玉米,可见,禾谷类的小麦与大豆间套后不但能改善小麦的氮素营养状况还使磷素营养也得以好转。  相似文献   

7.
玉米/花生间作对土壤微生物和土壤养分状况的影响   总被引:19,自引:0,他引:19  
通过大田试验,研究了玉米/花生间作对玉米和花生根区土壤微生物和土壤养分状况的影响.结果表明:与单作相比,间作能显著提高玉米和花生根区的土壤细菌数量;间作花生根区土壤真菌和放线菌数量与单作无显著差异;间作玉米根区土壤真菌和放线菌数量比单作明显提高;间作作物根区微生物群落功能多样性和代谢活性比单作有所改善.玉米/花生间作不同程度提高了整个间作系统根区的土壤碱解氮、速效磷、有机质含量及EC值,其中,间作玉米根区土壤养分的增加更为明显,说明玉米/花生间作可以较明显地改善两种作物根区的微生物和养分状况,土壤微生态环境的改善又会促进作物地上部的生长.  相似文献   

8.
《遗传》2007,29(9):1138-1138
《麦类作物学报》是由教育部主管、西北农林科技大学和国家小麦工程技术研究中心联合主办的专业性学术期刊,也是全国唯一的一份麦类作物专刊。主要刊载麦类作物(小麦、大麦、燕麦、黑麦等)遗传育种、  相似文献   

9.
燕麦/小麦间作对小麦生长和锰营养的影响   总被引:2,自引:0,他引:2  
通过根系分隔的盆栽试验,研究了燕麦,小麦间作对小麦生长及其锰营养的影响。结果表明:根系不分隔处理,小麦地上部干重和植株吸锰量都高于其他两种分隔方式;而根系完全分隔处理,小麦地上部植株锰含量高于其他两种分隔方式;根系不同分隔方式对川麦28土壤DTPA-Mn含量几乎没有影响,小麦9023土壤DTPA-Mn含量则以完全分隔处理高于另外两种分隔方式。推测在该间作体系中,燕麦可能通过根系分泌物来活化土壤难溶性的锰氧化物,从而促进了小麦的生长,改善了小麦的锰营养,但因其竞争能力不如小麦而消弱了自身的生长。具体原因有待于进一步试验验证。试验还发现,种植燕麦后土壤的DTPA-Mn含量要高于种植小麦后的土壤,而且燕麦地上部植株锰含量也比小麦高,表明燕麦活化、吸收土壤锰的能力强于小麦。不同间作组合时,小麦各项研究指标无一致的规律性,说明在促进小麦生长、改善小麦锰营养的能力方面,本试验采用的3个燕麦品种之间无明显差异。  相似文献   

10.
采用多年大田试验研究了小麦-大豆(A1)、小麦-甘薯(A2)、玉米(A3)、小麦/玉米/大豆(A4)和小麦/玉米/甘薯(A5)5种种植模式的根际环境变化特征和根系生长特性.结果表明:与A1、A2、A3和A5相比,A4提高了小麦、玉米、大豆在开花期和成熟期的生物量、根系活力和根干质量,提高了各作物根际土壤细菌、真菌和放线菌数量.各种植模式之间,植株生物量和根际微生物数量的变化规律为套作>单作、大豆茬口>甘薯茬口、边行>中行.小麦/玉米/大豆(A4)套作模式通过改善3种作物的根际环境,促进了作物地下部根系生长和地上部生物量的增加,从而实现作物增产.  相似文献   

11.
To gain a better understanding of the mechanisms of improvement of iron nutrition of peanut (Arachis hypogaea L.) intercropped with maize (Zea mays L.) in calcareous soil, both greenhouse and field experiments were conducted to investigate the rhizosphere (phytosiderophores) effects from maize, barley, oats and wheat with different phytosiderophores release rates on iron nutrition and other micronutrients in calcareous soil. Six cropping treatments were examined in a greenhouse experiment: peanut grown separately in monoculture, normal peanut/maize intercropping (two genotypes: Danyu13, Zhongdan12), peanut/barley intercropping, peanut/oats intercropping, and peanut/wheat intercropping. Additionally, we investigated in a field experiment the same five cropping systems as the greenhouse experiment (maize/peanut intercropping not including Zhongdan12). Our results show that the chlorophyll and active Fe concentrations in the young leaves of the peanut in the intercropping system with different gramineous species were much higher than those of the peanut in monoculture. In greenhouse conditions, the Fe concentration in the shoots of peanut plants grown in the intercropping systems of two maize genotypes separately were 1.40–1.44, 1.47–1.64 and 1.15–1.42 times higher respectively than those of peanut plants grown in monocropping at 55, 60 and 70 days. In particular, the Fe concentration in shoots of peanut plants grown in the intercropping systems of barley, oats and wheat were not only higher than those in monocropping but also higher than those in peanut intercropped cropping with maize. In the field, the concentration of Fe in shoot of intercropped peanut plants in rows 1–3 from gramineous species were significantly higher than in monocropping at the flowering stage. Simultaneously with iron nutrition variation in peanut, Zn and Cu concentrations of intercropped grown peanut increased significantly compared to those in monocropping in the greenhouse experiment, and different intercropping treatments generally increased the Zn and Cu content in the shoot of peanut in the field. Systemic mechanisms may be involved in adaptation to nutrient stresses at the whole plant level. The study suggests that a reasonable intercropping system of nutrient efficient species should be considered to prevent or mitigate iron and zinc deficiency of plants in agricultural practice.  相似文献   

12.
Two glasshouse studies were conducted to investigate the effect of interspecific complementary and competitive root interactions and rhizosphere effects on the concentration and uptake of Na, Cl and B, and N, P, K, Ca, Mg, Fe, Zn and Mn nutrition of mixed cropped peanut with maize (Experiment I), and barley (Experiment II) grown in nutrient-poor saline-sodic and B toxic soil. Mixed cropped plants were grown in either higher density or lower density. The results of the experiment revealed that dry shoot weight decreased in peanut but increased in maize and barley with associated plant species compared to their monoculture. Shoot Na and Cl concentrations of peanut decreased significantly in both experiments, regardless of higher or lower density. The concentrations of Na also decreased in the shoots of mixed cropped maize and barley, but Cl concentrations increased slightly. The concentration of B significantly decreased in mixed cropping in all plant species regardless of higher or lower density. Rhizosphere chemistry was strongly and differentially modified by the roots of peanut, maize and barley, and mixed growing. There were significant correlations between the root-secreted acid phosphatases (S-APase), acid phosphatase in rhizosphere (RS-APase) and rhizosphere P concentration (RS-P) in the both experiments. The Fe-solubilizing activity (Fe-SA) and ferric reducing (FR) capacity of the roots were generally higher in mixed culture relative to their monoculture, which improved Fe, Zn and Mn nutrition of peanut. Further, there were also significant correlations among FR, Fe-SA and RS-Fe concentrations. Peanut facilitated P nutrition of maize and barley, while maize and barley improved K, Fe, Zn and Mn nutrition of peanut grown in nutrient-poor saline-sodic and B toxic soil.  相似文献   

13.
通过土培方法研究了与玉米混作对花生根瘤形态结构及固氮功能的影响。结果表明,玉米与花生混作能够明显地改善花生铁营养、提高根瘤豆血红蛋白的含量。同时,单作花生根瘤细胞液泡化程度较高,正在发育的根瘤细胞内类菌体数量明显地比混作的花生低。成熟根瘤细胞类菌体周膜外空间(细胞壁以内、周膜外的空间)体积变大。说明单作花生固氮酶活性较低的原因是缺铁抑制了豆血红蛋白的合成和改变了根瘤形态结构以及类菌体的超微结构。  相似文献   

14.
Both rhizobox and field experiments were conducted to investigate nutritional interactions between peanut and maize in intercropping systems for Fe acquistion. Field observations indicated that Fe deficiency chlorosis symptoms in peanut grown in monoculture were more severe and widespread compared to those of peanuts intercropped with maize. This indicated a marked improvement in the iron nutrition of peanut intercropped with maize in the field and was further studied. In experiments with rhizoboxes, roots of maize and peanut were either allowed to interact with each other or prevented from making contact by inserting a solid plate between the root systems of the two species. A field experiment for four cropping treatments were examined: peanut grown separately in monoculture, normal peanut/maize intercropping, peanut/maize intercropping with solid plates between the root systems of the two crop species and peanut/maize intercropping with 30 μm nylon nets between the root systems. The results show that the chlorophyll and HCl-extractable Fe concentrations in young leaves of peanut in the intercropping system with unrestricted interactions of the roots of both plant species were much higher than those of peanut in monoculture. In the nylon mesh treatment, the beneficial effects of the maize extended to row 3. The improvement of Fe nutrition in the intercropping system got reduced but not diminished completely in the treatment with nylon net. It is suggested that the improvement in the Fe nutrition of peanut intercropped with maize was mainly caused by rhizosphere interactions between peanut and maize. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Peanut/maize intercropping is a sustainable and effective agroecosystem that evidently enhances the Fe nutrition of peanuts in calcareous soils. So far, the mechanism involved in this process has not been elucidated. In this study, we unravel the effects of phytosiderophores in improving Fe nutrition of intercropped peanuts in peanut/maize intercropping. The maize ys3 mutant, which cannot release phytosiderophores, did not improve Fe nutrition of peanut, whereas the maize ys1 mutant, which can release phytosiderophores, prevented Fe deficiency, indicating an important role of phytosiderophores in improving the Fe nutrition of intercropped peanut. Hydroponic experiments were performed to simplify the intercropping system, which revealed that phytosiderophores released by Fe‐deficient wheat promoted Fe acquisition in nearby peanuts and thus improved their Fe nutrition. Moreover, the phytosiderophore deoxymugineic acid (DMA) was detected in the roots of intercropped peanuts. The yellow stripe1‐like (YSL) family of genes, which are homologous to maize yellow stripe 1 (ZmYS1), were identified in peanut roots. Further characterization indicated that among five AhYSL genes, AhYSL1, which was localized in the epidermis of peanut roots, transported Fe(III)–DMA. These results imply that in alkaline soil, Fe(III)–DMA dissolved by maize might be absorbed directly by neighbouring peanuts in the peanut/maize intercropping system.  相似文献   

16.
17.
A greenhouse study was conducted to investigate the rhizosphere effects on iron (Fe), phosphorus (P), nitrogen (N), potassium (K), calcium (Ca), zinc (Zn), and manganese (Mn) nutrition in peanut plants (Arachis hypogaea L.) by intercropping them with maize (Zea mays L.). In addition, we studied the release of phytosiderophores and the ferric reductase activity of roots, pH and acid phosphatases in the rhizosphere and bulk soil, and the secretion of acid phosphatases in roots. Our results revealed that shoot yields of peanut and maize plants were decreased by intercropping the plants, as compared to monocultured plants. Growing peanut plants in a mixture with maize, enhanced the shoot concentrations of Fe and Zn nearly 2.5-fold in peanut, while the Mn concentrations of peanut were little affected by intercropping. In the case of maize, the shoot concentrations of Fe, Zn and Mn were not significantly affected by intercropping with peanut. Intercropping also improved the shoot K concentration of peanut and maize, while it negatively affected the Ca concentration. In the intercropping of peanut/maize, the acid phosphatase activity of the rhizosphere and bulk soil and root secreted acid phosphatases were significantly higher than that of monocultured peanut and maize. In accordance, the shoot P concentrations of peanut and maize plants were much higher when they were intercropped with peanut or maize, respectively. The rhizosphere and bulk soil pH values were not clearly affected by different cropping systems. When compared to their monoculture treatments, the secretion of phytosiderophore from roots and the root ferric reducing capacity of the roots were either not affected or increased by 2-fold by the intercropping, respectively. The results indicate the importance of intercropping systems as a promising management practice to alleviate Fe deficiency stress. Intercropping also contributes to better nutrition of plants with Zn, P and K, most probably by affecting biological and chemical process in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号