首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2004年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Under drought conditions, leaf photosynthesis is limited by the supply of CO2. Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L] using an ABA‐deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL) because leaf hydraulics may be related to gm. Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose‐dependent manner. ΨL in WT was decreased by the drought treatment to ?0.7 MPa, whereas ΨL in aba1 was around ?0.8 MPa even under the well‐watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics.  相似文献   
2.
To evaluate Ni dynamics at the subcellular level, the distribution and speciation of Ni were determined in wild‐type (WT) and Ni‐tolerant (NIT) tobacco BY‐2 cell lines. When exposed to low but toxic levels of Ni, NIT cells were found to contain 2.5‐fold more Ni (14% of whole‐cell Ni values) in their cell walls than WT cells (6% of whole‐cell Ni values). In addition to higher levels of Ni in the apoplast, a higher proportion (94%) of symplastic Ni was localized in the vacuoles of NIT cells than in the vacuoles of WT cells (81%). The concentration of cytosolic Ni in the NIT cells was significantly lower (18 nmol g?1 FW) than that in the WT cells (85 nmol g?1 FW). In silico simulation showed that 95% of vacuolar Ni was in the form of Ni‐citrate complexes, and that free Ni2+ was virtually absent in the NIT cells. On the other hand, the amount of free metal ions was markedly increased in WT cells because free citrate was depleted by chelation of Ni. A protoplast viability assay using BCECF‐AM further demonstrated that the main mechanism that confers strong Ni tolerance was present in the symplast as opposed to the cell wall.  相似文献   
3.
The bioactive form of jasmonate is the conjugate of the amino acid isoleucine (Ile) with jasmonic acid (JA), which is biosynthesized in a reaction catalysed by the GH3 enzyme JASMONATE RESISTANT 1 (JAR1). We examined the biochemical properties of OsJAR1 and its involvement in photomorphogenesis of rice (Oryza sativa). OsJAR1 has a similar substrate specificities as its orthologue in Arabidopsis. However, osjar1 loss‐of‐function mutants did not show as severe coleoptile phenotypes as the JA‐deficient mutants coleoptile photomorphogenesis 2 (cpm2) and hebiba, which develop long coleoptiles in all light qualities we examined. Analysis of hormonal contents in the young seedling stage revealed that osjar1 mutants are still able to synthesize JA‐Ile conjugate in response to blue light, suggesting that a redundantly active enzyme can conjugate JA and Ile in rice seedlings. A good candidate for this enzyme is OsJAR2, which was found to be able to catalyse the conjugation of JA with Ile as well as with some additional amino acids. In contrast, if plants in the vegetative stage were mechanically wounded, the content of JA‐Ile was severely reduced in osjar1, demonstrating that OsJAR1 is the most important JA‐Ile conjugating enzyme in the wounding response during the vegetative stage.  相似文献   
4.

Background

Mesenchymal stromal cell (MSC)–based therapy has great potential to modulate chronic inflammation and enhance tissue regeneration. Crosstalk between MSC-lineage cells and polarized macrophages is critical for bone formation and remodeling in inflammatory bone diseases. However, the translational application of this interaction is limited by the short-term viability of MSCs after cell transplantation.

Methods

Three types of genetically modified (GM) MSCs were created: (1) luciferase-expressing reporter MSCs; (2) MSCs that secrete interleukin (IL)-4 either constitutively; and (3) MSCs that secrete IL-4 as a response to nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) activation. Cells were injected into the murine distal femoral bone marrow cavity. MSC viability and bone formation were examined in vivo. Cytokine secretion was determined in a femoral explant organ culture model.

Results

The reporter MSCs survived up to 4 weeks post-implantation. No difference in the number of viable cells was found between high (2.5?×?106) and low (0.5?×?106) cell-injected groups. Injection of 2.5?×?106 reporter MSCs increased local bone mineral density at 4 weeks post-implantation. Injection of 0.5?×?106 constitutive IL-4 or NFκB-sensing IL-4–secreting MSCs increased bone mineral density at 2 weeks post-implantation. In the femoral explant organ culture model, LPS treatment induced IL-4 secretion in the NFκB-sensing IL-4–secreting MSC group and IL-10 secretion in all the femur samples. No significant differences in tumor necrosis factor (TNF)α and IL-1β secretion were observed between the MSC-transplanted and control groups in the explant culture.

Discussion

Transplanted GM MSCs demonstrated prolonged cell viability when transplanted to a compatible niche within the bone marrow cavity. GM IL-4–secreting MSCs may have great potential to enhance bone regeneration in disorders associated with chronic inflammation.  相似文献   
5.
Rice internodes are vital for supporting high‐yield panicles, which are controlled by various factors such as cell division, cell elongation and cell wall biosynthesis. Therefore, formation and regulation of the internode cell‐producing intercalary meristem (IM) are important for determining the shape of internodes. To understand the regulation of internode development, we analysed a rice dwarf mutant, dwarf 50 (d50). Previously, we reported that parenchyma cells in the elongated internodes of d50 ectopically deposit cell wall phenolics. In this study, we revealed that D50 encodes putative inositol polyphosphate 5‐phosphatase (5PTase), which may be involved in phosphoinositide signalling required for many essential cellular functions, such as cytoskeleton organization, endocytosis and vesicular trafficking in eukaryotes. Analysis of the rice genome revealed 20 putative 5PTases including D50. The d50 mutation induced abnormally oriented cell division, irregular deposition of cell wall pectins and thick actin bundles in the parenchyma cells of the IM, resulting in abnormally organized cell files of the internode parenchyma and dwarf phenotype. Our results suggest that the putative 5PTase, encoded by D50, is essential for IM formation, including the direction of cell division, deposition of cell wall pectins and control of actin organization.  相似文献   
6.
Diapause and cold tolerance are essential for temperate insects to pass the winter, with the mechanisms controlling these two traits varying considerably among insects. In the present study, diapause and cold tolerance are compared among three Leptopilina species: Leptopilina japonica Novkovi? & Kimura, Leptopilina victoriae Nordlander and Leptopilina ryukyuensis Novkovi? & Kimura, all larval parasitoids of frugivorous drosophilid flies, with the aim of understanding their climatic adaptations. The first species is divided into the temperate (Leptopilina japonica japonica) and subtropical subspecies (Leptopilina japonica formosana), and the latter two species are distributed in the tropical and subtropical regions. The temperate subspecies of L. japonica enters prepupal diapause at low temperatures (15 or 18 °C), irrespective of photoperiod, and some individuals enter diapause when exposed to 0 °C for 1 or 2 day(s) or when placed at low humidity. Leptopilina victoriae also shows signs of diapause initiation at 15 °C, although L. ryukyuensis and L. j. formosana from the subtropical regions do not. Preimaginal viability at low temperature (13, 14 or 15 °C) is usually lower in L. victoriae from the tropical regions compared with L. japonica or L. ryukyuensis from the temperate or subtropical regions. Diapausing prepupae of the temperate subspecies appear to be cold tolerant. However, the cold tolerance of nondiapausing prepupae, pupae and adult females varies little among the tropical, subtropical and temperate species or subspecies, and adult males of the temperate subspecies of L. japonica are less cold tolerant than those of the tropical or subtropical species or subspecies. Cold tolerance may be unnecessary, except for diapausing individuals of the temperate species, because nondiapausing individuals appear in warmer seasons.  相似文献   
7.
Peanut/maize intercropping is a sustainable and effective agroecosystem that evidently enhances the Fe nutrition of peanuts in calcareous soils. So far, the mechanism involved in this process has not been elucidated. In this study, we unravel the effects of phytosiderophores in improving Fe nutrition of intercropped peanuts in peanut/maize intercropping. The maize ys3 mutant, which cannot release phytosiderophores, did not improve Fe nutrition of peanut, whereas the maize ys1 mutant, which can release phytosiderophores, prevented Fe deficiency, indicating an important role of phytosiderophores in improving the Fe nutrition of intercropped peanut. Hydroponic experiments were performed to simplify the intercropping system, which revealed that phytosiderophores released by Fe‐deficient wheat promoted Fe acquisition in nearby peanuts and thus improved their Fe nutrition. Moreover, the phytosiderophore deoxymugineic acid (DMA) was detected in the roots of intercropped peanuts. The yellow stripe1‐like (YSL) family of genes, which are homologous to maize yellow stripe 1 (ZmYS1), were identified in peanut roots. Further characterization indicated that among five AhYSL genes, AhYSL1, which was localized in the epidermis of peanut roots, transported Fe(III)–DMA. These results imply that in alkaline soil, Fe(III)–DMA dissolved by maize might be absorbed directly by neighbouring peanuts in the peanut/maize intercropping system.  相似文献   
8.
The puffer Takifugu niphobles is a top predator of hard-shelled prey such as molluscs; its predatory tactics may affect the evolution of prey coloration. Two hypotheses concerning its foraging were tested: (1) T. niphobles shows frequency dependence in foraging colour-polymorphic prey, and (2) such dependence reverses in response to changes in prey distribution. Captive fish were provided with 70 artificial prey, coloured either dark brown or pale brown, at four frequencies (1 : 4, 2 : 3, 3 : 2, 4 : 1) and in two distribution patterns (uniform and aggregated). When prey were uniformly distributed, frequency and feeding rate significantly influenced colour preference: the common morph was consumed more. When prey were aggregated, frequency significantly affected preference only when the feeding rate was low, in which case the rare morph was consumed more. Thus both hypotheses were supported. The impact of T. niphobles 's frequency-dependent predation and its reversal on the colour evolution of prey species, especially molluscs, is discussed.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 197–202.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号