首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
四川唐家河自然保护区黑腹绒鼠对夏季生境的选择   总被引:1,自引:1,他引:0  
为揭示影响黑腹绒鼠夏季空间分布的生态因素,采用样线法和样方取样法,于2009年6~8月在四川省唐家河国家级自然保护区对该物种夏季生境选择进行了研究.野外工作期间,共调查生境样方和对照样方各58个.在21个生境变量中,海拔、坡度、坡向等16个变量在生境样方和对照样方间存在显著差异,表明该地黑腹绒鼠对夏季生境的利用具有明显的选择性.该地黑腹绒鼠夏季频繁出现的生境为:坡向朝南,偏好选择处于较早植被演替阶段,海拔较低,乔木和竹子较矮,离水源较近,乔木层郁闭度、乔木胸径、竹子盖度、竹子密度和落叶层盖度较小,而草本层较高,草本盖度、密度及灌木密度均较大.Logistic回归分析表明坡向和草本盖度是影响该地黑腹绒鼠夏季生境选择的主要生态因子,可能反映了来自食物丰富度和捕食两方面的选择压力决定着该物种空间分布.在此基础上构建了黑腹绒鼠夏季生境资源选择函数logit(P)=8.027+2.792×草本盖度+0.325×坡向,其对生境的选择概率为P=elogit(P)/(1+elogit(P)),可用于预测夏季黑腹绒鼠在该保护区内的空间分布.  相似文献   

2.
焦迎迎  徐雨  冉江洪  李冬琴  王颖  汤开成 《四川动物》2012,31(3):448-451,455
2009年3~6月,采用样方法对四川省洪雅县人工林赤腹松鼠危害相关的生境因子进行了调查。共设置了240个样方。样方调查中记录了2个反应危害等级的变量(危害株数和乔木总数)和11个生境变量(森林类型、海拔、坡向、坡度、坡位、距最近道路距离、距最近水源距离、乔木均高、乔木平均胸围、灌木盖度和草本盖度)。通过广义线性模型研究这些因子与人工林赤腹松鼠危害程度的关系。结果显示,赤腹松鼠危害程度与森林类型、坡度、坡向、乔木平均胸围呈显著性相关,与其他因子无显著相关性,在柳杉-杉木林中的危害高于纯柳杉林,在阴坡的危害低于其他坡向,危害程度随坡度和乔木平均胸围的增加而增加。  相似文献   

3.
刘雪华  金学林 《生态学杂志》2008,27(12):2123-2128
对秦岭佛坪和长青2个保护区的大熊猫活动密集区的系列生境因子(包括海拔、坡度、坡向、水系密度、生境类型、竹子种类)进行了研究,并分析了其与大熊猫痕迹点的关系。结果表明:佛坪和长青保护区的生境特征既有相似性又有差异性,故2个保护区的大熊猫对生境的选择也呈相似性和差异性;在长青和佛坪保护区各存在1个大熊猫活动密集区,其具有明显的宏观生境特征;大熊猫活动密集区的生境资源可获得性和大熊猫对生境因子的适应选择对应关系明显;秦岭南坡大熊猫选择的生境特征主要是:海拔1 200~2 600 m,坡度20°~40°,水系密度为2~3条·km-2,针阔叶混交林,巴山木竹和秦岭箭竹的分布区。  相似文献   

4.
吉林蛟河针阔混交林树木生长与生境的关联性   总被引:1,自引:0,他引:1  
以吉林蛟河21.12 hm2(660 m×320 m)针阔混交林样地为对象,在以海拔、坡度、坡向以及凸凹度为地形变量划分样地生境类型的基础上,利用2009—2014年植被生长数据,研究生境差异对树木生长的影响机制。研究采用生境空间随机(生境CSR)、物种空间随机(物种CSR)以及物种Thomas3种生态学过程零模型,检验树木径向生长与4种生境类型之间的关联性;采用Pearson相关系数计算树木生长与地形变量之间的相关关系,量化地形变量对树木生长的影响。研究结果显示:(1)样地内绝大多数物种(生境CSR过程:86.1%;物种CSR过程:94.4%;物种Thomas过程:61.1%)的径向生长表现出明显的生境关联性。(2)不同生活型物种的生境利用方式不同:灌木和亚乔木具有类似的生境偏好,与海拔相对较低、地势相对平缓的生境型1正关联,与海拔相对较高、坡度相对较大的生境型2和生境型4负关联;乔木在不同生境类型中会同时存在正、负关联性,但更倾向于和生境1发生负关联,而和生境4发生正关联,并且乔木树种的径向生长对地形之间的差异更加敏感;(3)高达86.1%的物种生长与至少一种地形变量显著相关,其中海拔对树木生长影响最大,其次是坡度和凸凹度,坡向的影响则相对最小。上述结果表明,样地内不同物种之间出现了明显的生境利用性分化,生境利用性分化是影响温带针阔混交林树木径向生长的重要因素。  相似文献   

5.
放牧对冶勒自然保护区大熊猫生境的影响   总被引:9,自引:1,他引:8  
四川冶勒自然保护区周边村民的牲畜基本上都在保护区内放养。为研究放牧和大熊猫对竹类的利用及放牧强度与竹类的关系 ,利用Forageratio选择指数 ,Pearson相关分析和联列表独立性检验 ,对调查数据进行分析。结果表明 ,大熊猫活动区海拔为 2 870~ 390 0m ,并喜欢选择竹类盖度为 5 0 %~ 10 0 % ,竹类高度 2~ 3m ,竹类生长状况好的竹林。而放牧海拔为 2 70 0~ 4 0 0 0m ,放牧对竹类的盖度、高度、生长状况没有选择性 ,为随机利用。放牧海拔与大熊猫活动海拔无显著相关。大熊猫在放牧生境活动的频率较低 ;放牧生境中竹类的成竹平均密度和竹子平均密度都低于大熊猫活动生境 ,枯死竹比例高于大熊猫活动生境。放牧强度与竹类的有、无和竹类盖度是相关联的 ,大熊猫出现与否也与放牧活动相关联 (在 95 %的置信度 ,P <0 0 5 )。放牧强度强的生境没有大熊猫活动 ,竹子的盖度也较低。由于放牧活动对竹类的生长和盖度造成影响 ,从而影响大熊猫对放牧生境的利用 ,在保护区内应采取一定的措施控制放牧活动。  相似文献   

6.
2008 年3 月和2008 年11 月,在舟山群岛以獐的足迹、粪便和卧迹等新鲜活动痕迹为依据,对獐春、秋季栖息地利用特征进行研究。共设置样方420 个,对样方内生境类型、乔木盖度、灌木盖度、草本盖度、坡位、坡度、坡向、海拔、人为干扰距离和水源距离等10 个生态因子进行测量评估。结果发现,獐春、秋两季的栖息地利用特征是(1)隐蔽和食物因子:春、秋季利用阔叶林、农田和山坡地,秋季对灌木林也有较高的利用率,而对农田的利用率下降;春、秋季乔木盖度、灌木盖度和草本盖度较低处(≤50%) 利用率较高,但春季对乔木盖度较高处(> 50% )也有较高的利用率; (2) 地形因子:春季对坡度较缓、中下坡位、海拔较低处(< 100 m)利用率较高;秋季对坡度较缓、中下坡位、海拔较低(<100 m)的南坡利用率较高; (3) 水源因子:春季利用水源距离较近(< 200 m) 的区域;秋季对水源距离较近(< 200 m)和较远(>600 m) 区域的利用率均较高; (4) 干扰因子:春季主要利用距离人为干扰近处(< 100 m),秋季主要利用距离人为干扰远(> 200 m)处。逐步判别分析显示,春、秋季獐栖息地利用特征存在显著差异,乔木盖度、坡度、坡向、海拔和人为干扰5 个因子是主要的区分因子。舟山群岛人为干扰剧烈、次生乔木和灌木较为发达以及草本植物不发达等一系列特点,造成了舟山群岛獐特殊的栖息地现状。本研究将对制订适合于海岛的动物栖息地保护对策提供理论依据,也为了解海岛生境下獐不同季节的生存状况提供科学依据。  相似文献   

7.
本研究在2012至2013年进行两次调查,采用样带法和样方法在阿尔金山自然保护区东部(37°15'~37°23'N,90°11'~90°20'E)对藏野驴(Equus kiang)、野牦牛(Bos grunniens)的分布及其栖息地进行调查,共设置3条样线(总长达146.9 km)和128个样方。调查发现,藏野驴主要集中于伊协克帕提附近的荒漠草原,而野牦牛的主要栖息地位于沙山附近的阿坝堤坝草场。通过Vanderloeg和Scavia选择系数以及主成分分析,对藏野驴和野牦牛对不同环境因子(包括植被类型、植被盖度、草本种类数、土壤pH、海拔、坡度、坡向、水源)的选择性以及各因子在物种栖息地选择的重要程度进行研究,同时利用独立T检验分析两物种之间的环境变量选择差异性。结果表明,藏野驴倾向选择植被盖度小于70%,坡度2°~5°的南坡,海拔3800~4000 m,土壤pH 8.0~8.5的高寒荒漠生境;野牦牛则偏好选择植被盖度大于70%,坡度5°~15°的东坡或者北坡,海拔4200~4600 m,土壤pH 7.0~8.0,与水源距离小于1000 m的高寒荒漠草原以及沼泽草甸生境;影响藏野驴生境选择的主要因子为植被类型和坡度,而影响野牦牛生境选择的主要因子是植被盖度;虽然藏野驴和野牦牛在资源利用上存在部分重叠,但它们对栖息地植被盖度、植被高度、海拔和坡度的选择存在显著差异性(P0.05)。  相似文献   

8.
以三峡库区次生黄栌(Cotinus coggygria)灌木林群落为研究对象,基于样地调查,分析了生境特征和群落特征。结果显示:该群落共有植物30科37属56种,物种组成简单、多样性低,群落中以喜光、耐干旱瘠薄和碱性土壤的物种居多。海拔和土壤有效磷含量是生境差异的重要因素;海拔、坡度和坡向对物种分布的影响最大。海拔与物种密度极显著负相关,坡向与物种高度极显著正相关;土壤pH与物种多样性和均匀度显著负相关,速效钾含量与物种密度呈极显著正相关,有效磷含量与物种丰富度和多样性显著正相关,与盖度显著负相关。综上,海拔、坡度和坡向是影响物种分布的因素;土壤有效磷和pH是影响物种多样性的因素;海拔、坡向、坡度、土壤有效磷和速效钾是影响群落数量特征的因素。群落总体关联性和物种种间联结性均呈显著负相关,种间联结较松散,处于不稳定的灌草阶段,生态系统脆弱,对生境变化十分敏感。因此,在对三峡库区黄栌群落进行生态修复时,应以保护现有群落及其生境为前提,选择适生乡土植物进行合理配置,增加物种多样性,促进群落演替。  相似文献   

9.
小相岭大熊猫与放牧家畜的生境选择   总被引:23,自引:3,他引:20  
利用 Forage Ratio指数对小相岭山系大熊猫与放牧牲畜的生境选择进行了比较研究 ,研究涉及 1 1种生境因子。研究结果表明 ,大熊猫喜欢选择在山体的脊部和中部的凸坡 ,坡向南坡 ,喜欢选择 0~ 2 4 %的灌木盖度 ,喜欢竹子盖度大于 5 0 %的原始针叶林 ,对坡度、乔木高度、乔木郁闭度、灌木高度不存在选择性 ,都为随机利用。放牧牲畜喜欢选择利用复合坡、山体的下部、坡度小于 2 0°的山坡 ;喜欢利用的生境类型是草坡和灌丛 ;选择的森林起源是次生林 ;所利用生境的乔木高度为 5~ 9m,对坡向、乔木郁闭度、灌木高度、灌木盖度、竹子盖度都随机利用。放牧家畜与大熊猫在对生境因子的利用上有许多共同点 ,对许多因子类型大多都是随机利用 ,因而 ,在对一些生境因子的利用上 ,放牧对大熊猫的活动会产生一定的影响。同时 ,它们在生境选择上也存在一定的差异 ,特别是在对植被类型和森林起源的选择上差异较大 ,只要合理的规划和控制放牧活动 ,也就可能达到大熊猫保护与社区经济协调发展的目的  相似文献   

10.
甘肃白水江保护区西段大熊猫对生境的选择   总被引:1,自引:0,他引:1  
采用Vanderloeg和Scavia选择指数,调查分析了白水江保护区西段白马河保护站李子坝至邱家坝区域大熊猫对生境的选择,结果表明:该区域大熊猫喜欢选择海拔高于2500 m的中高山的山脊、坡的上部活动;喜欢在坡度21°~30°的半阴半阳坡活动;喜欢原始的针阔混交林和针叶林;喜欢乔木平均胸径大于50 cm,竹子高度大于2 m、盖度大于75%,生长类型为簇生,生长状况好竹林中活动;对坡形、乔木郁闭度、水源的选择差异不显著,几乎是随机选择。  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
On the origin of the Hirudinea and the demise of the Oligochaeta   总被引:10,自引:0,他引:10  
The phylogenetic relationships of the Clitellata were investigated with a data set of published and new complete 18S rRNA gene sequences of 51 species representing 41 families. Sequences were aligned on the basis of a secondary structure model and analysed with maximum parsimony and maximum likelihood. In contrast to the latter method, parsimony did not recover the monophyly of Clitellata. However, a close scrutiny of the data suggested a spurious attraction between some polychaetes and clitellates. As a rule, molecular trees are closely aligned with morphology-based phylogenies. Acanthobdellida and Euhirudinea were reconciled in their traditional Hirudinea clade and were included in the Oligochaeta with the Branchiobdellida via the Lumbriculidae as a possible link between the two assemblages. While the 18S gene yielded a meaningful historical signal for determining relationships within clitellates, the exact position of Hirudinea and Branchiobdellida within oligochaetes remained unresolved. The lack of phylogenetic signal is interpreted as evidence for a rapid radiation of these taxa. The placement of Clitellata within the Polychaeta remained unresolved. The biological reality of polytomies within annelids is suggested and supports the hypothesis of an extremely ancient radiation of polychaetes and emergence of clitellates.  相似文献   

19.
Data on the ontogeny of the posterior haptor of monogeneans were obtained from more than 150 publications and summarised. These data were plotted into diagrams showing evolutionary capacity levels based on the theory of a progressive evolution of marginal hooks, anchors and other attachment components of the posterior haptor in the Monogenea (Malmberg, 1986). 5 + 5 unhinged marginal hooks are assumed to be the most primitive monogenean haptoral condition. Thus the diagrams were founded on a 5 + 5 unhinged marginal hook evolutionary capacity level, and the evolutionary capacity levels of anchors and other haptoral attachement components were arranged according to haptoral ontogenetical sequences. In the final plotting diagram data on hosts, type of spermatozoa, oncomiracidial ciliation, sensilla pattern and protonephridial systems were also included. In this way a number of correlations were revealed. Thus, for example, the number of 5 + 5 marginal hooks correlates with the most primitive monogenean type of spermatozoon and with few sensillae, many ciliated cells and a simple protonephridial system in the oncomiracidium. On the basis of the reviewed data it is concluded that the ancient monogeneans with 5 + 5 unhinged marginal hooks were divided into two main lines, one retaining unhinged marginal hooks and the other evolving hinged marginal hooks. Both main lines have recent representatives at different marginal hook evolutionary capacity levels, i.e. monogeneans retaining a haptor with only marginal hooks. For the main line with hinged marginal hooks the name Articulon-choinea n. subclass is proposed. Members with 8 + 8 hinged marginal hooks only are here called Proanchorea n. superord. Monogeneans with unhinged marginal hooks only are here called Ananchorea n. superord. and three new families are erected for its recent members: Anonchohapteridae n. fam., Acolpentronidae n. fam. and Anacanthoridae n. fam. (with 7 + 7, 8 + 8 and 9 + 9 unhinged marginal hooks, respectively). Except for the families of Articulonchoinea (e.g. Acanthocotylidae, Gyrodactylidae, Tetraonchoididae) Bychowsky's (1957) division of the Monogenea into the Oligonchoinea and Polyonchoinea fits the proposed scheme, i.e. monogeneans with unhinged marginal hooks form one old group, the Oligonchoinea, which have 5 + 5 unhinged marginal hooks, and the other group form the Polyonchoinea, which (with the exception of the Hexabothriidae) has a greater number (7 + 7, 8 + 8 or 9 + 9) of unhinged marginal hooks. It is proposed that both these names, Oligonchoinea (sensu mihi) and Polyonchoinea (sensu mihi), will be retained on one side and Articulonchoinea placed on the other side, which reflects the early monogenean evolution. Except for the members of Ananchorea [Polyonchoinea], all members of the Oligonchoinea and Polyonchoinea have anchors, which imply that they are further evolved, i.e. have passed the 5 + 5 marginal hook evolutionary capacity level (Malmberg, 1986). There are two main types of anchors in the Monogenea: haptoral anchors, with anlages appearing in the haptor, and peduncular anchors, with anlages in the peduncle. There are two types of haptoral anchors: peripheral haptoral anchors, ontogenetically the oldest, and central haptoral anchors. Peduncular anchors, in turn, are ontogenetically younger than peripheral haptoral anchors. There may be two pairs of peduncular anchors: medial peduncular anchors, ontogentically the oldest, and lateral peduncular anchors. Only peduncular (not haptoral) anchors have anchor bars. Monogeneans with haptoral anchors are here called Mediohaptanchorea n. superord. and Laterohaptanchorea n. superord. or haptanchoreans. All oligonchoineans and the oldest polyonchoineans are haptanchoreans. Certain members of Calceostomatidae [Polyonchoinea] are the only monogeneans with both (peripheral) haptoral and peduncular anchors (one pair). These monogeneans are here called Mixanchorea n. superord. Polyonchoineans with peduncular anchors and unhinged marginal hooks are here called the Pedunculanchorea n. superord. The most primitive pedunculanchoreans have only one pair of peduncular anchors with an anchor bar, while the most advanced have both medial and lateral peduncular anchors; each pair having an anchor bar. Certain families of the Articulonchoinea, the Anchorea n. superord., also have peduncular anchors (parallel evolution): only one family, the Sundanonchidae n. fam., has both medial and lateral peduncular anchors, each anchor pair with an anchor bar. Evolutionary lines from different monogenean evolutionary capacity levels are discussed and a new system of classification for the Monogenea is proposed.In agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. EditorIn agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. Editor  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号