首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reproducing the function of the natural heart with an artificial heart requires a multi-disciplinary approach. Problems to be solved are anatomical, physiological, biological and technical ones. Moreover, clinical use of the artificial heart on a large scale in the near future may involve economical, ethical and legal issues. These several aspects are reviewed, and the State of the Art in 1981 is established.  相似文献   

2.
BACKGROUND: Patterned growth of vertebrate organs is essential for normal physiological function, but the underlying pathways that govern organotypic growth are not clearly understood. Heart function is critically dependent upon the concentric thickening of the ventricular wall generated by the addition of cells to the myocardium along the axis from the endocardium (inside) to the outside of the chamber. In heart of glass mutant embryos, the number of cells in the myocardium is normal, but they are not added in the concentric direction. As a consequence, the chambers are huge and dysfunctional, and the myocardium remains a single layer. RESULTS: To begin to define the factors controlling the concentric growth of cells in the myocardium, we used positional cloning to identify the heart of glass (heg) gene. heg encodes a protein of previously undescribed function, expressed in the endocardial layer of the heart. By alternative splicing, three distinct isoforms are generated, one of which is predicted to be transmembrane and two other secreted. By selective morpholino perturbation, we demonstrate that the transmembrane form is critical for the normal pattern of growth. CONCLUSIONS: heart of glass encodes a previously uncharacterized endocardial signal that is vital for patterning concentric growth of the heart. Growth of the heart requires addition of myocardial cells along the endocardial-to-myocardial axis. This axis of patterning is driven by heg, a novel transmembrane protein expressed in the endocardium.  相似文献   

3.
4.
5.
6.
Beta-adrenergic receptors of the normal heart and in heart failure   总被引:2,自引:0,他引:2  
The heart is often refereed to as an "beta-adrenergic organ" because beta-adrenergic agonists are powerful stimulants of cardiac contractility. Catecholamines acting through beta-adrenoceptors produce both positive inotropic and chronotropic effects in human heart. It is now generally accepted that in human heart both beta 1- and beta 2-adrenoceptors coexist. beta-Adrenergic transduction system consist of membrane-bound beta-receptors, the effector enzyme adenylyl cyclase and guanine nucleotide-binding transduction (G) proteins. Repeated long-lasting agonist stimulus evokes homologous or heterologous desensitization of transduction system. Chronic heart failure accompanies with decreased responsiveness to beta-adrenoceptor agonists and is thought to exacerbate the loss of cardiac contractility. Depending on the etiology of heart failure abnormalities of the beta-receptor-G protein-adenylyl cyclase system result from a reduced of beta 1-receptors, uncoupling of beta 1- or beta 2-receptors, alteration of G-protein function, or decreased catalytic subunit activity of adenylyl cyclase and enhanced expression of beta-adrenoceptor kinase. The model most widely used is that of circulating lymphocytes that contain a homogeneous population of beta 2-adrenoceptors. The biochemical and pharmacological properties of human lymphocyte beta 2-adrenoceptors are quite comparable to those of heart beta 2-receptors. The analysis of lymphocyte beta 2-adrenoceptor-adenylyl cyclase system can be used as a model for long-term regulation of human cardiac beta 1- and beta 2-adrenoceptors only if serial changes in response to administration of non-selective beta-adrenergic agonists or antagonists are being investigated. This review concentrates on beta-adrenoceptors in human healthy heart and in heart failure and also on lymphocyte beta 2-adrenoceptors and on the changes of these receptors properties under the influence of some cardiotropic drugs.  相似文献   

7.
Regenerating the heart   总被引:22,自引:0,他引:22  
Cell-based cardiac repair offers the promise of rebuilding the injured heart from its component parts. Work began with committed cells such as skeletal myoblasts, but recently the field has expanded to explore an array of cell types, including bone marrow cells, endothelial progenitors, mesenchymal stem cells, resident cardiac stem cells, and both mouse and human embryonic stem cells. A related strategy for cardiac repair involves cell mobilization with factors such as cytokines. Translation of cell-based approaches to the clinic has progressed rapidly, and clinical trials using autologous skeletal myoblasts and bone marrow cells are under way. Many challenges remain before the vision of healing an infarct by muscle regeneration can be realized. Future research is likely to focus on improving our ability to guide the differentiation of stem cells, control their survival and proliferation, identify factors that mediate their homing and modulate the heart's innate inflammatory and fibrotic responses.  相似文献   

8.
9.
Incorporating the intrinsic variability of heart contractility varying with heart rate into the mathematical model of human heart would be useful for addressing the dynamical behaviors of human cardiovascular system, but models with such features were rarely reported. This study focused on the development and evaluation of a mathematical model of the whole heart, including the effects of heart contractility varying with heart rate changes. This model was developed based on a paradigm and model presented by Ottesen and Densielsen, which was used to model ventricular contraction. A piece-wise function together with expressions for time-related parameters were constructed for modeling atrial contraction. Atrial and ventricular parts of the whole heart model were evaluated by comparing with models from literature, and then the whole heart model were assessed through coupling with a simple model of the systemic circulation system and the pulmonary circulation system. The results indicated that both atrial and ventricular parts of the whole heart model could reasonably reflect their contractility varying with heart rate changes, and the whole heart model could exhibit major features of human heart. Results of the parameters variation studies revealed the correlations between the parameters in the whole heart model and performances (including the maximum pressure and the stroke volume) of every chamber. These results would be useful for helping users to adjust parameters in special applications.  相似文献   

10.
11.
12.

From the Heart of the WorldThe Elder Brothers’ Warning. Director: Alan Ereira; camera: Bill Broomfield; editor: Horacio Queiro; sound: John Wills. 1990, color, 87minutes VHS‐NTSC, VHS‐PAL. English narration and subtitles. Distributed by BBC Enterprises, 80 Wood Lane, London W12 OTT; or Mystic Fire Video, 225 Lafayette Street, Suite 1206, New York 10012; sale only, £12 or $29.95 + $4.00 postage. Ereira, Alan, The Heart of the World. London: Jonathan Cape, 1990, bibliography, index, 288 pp., £15.99.  相似文献   

13.
14.
15.
Angiotensin II (Ang II) has been found to exert preconditioning-like effect on mammalian hearts. Diverse mechanisms are known to exist to explain the cardioprotective abilities of Ang II preconditioning. The present study hypothesized, based on the recent report that Ang II generates reactive oxygen species (ROS) through NADPH oxidase, that Ang II preconditioning occurs through redox cycling. To test this hypothesis, a group of rat hearts was treated with Ang II in the absence or presence of an NADPH oxidase inhibitor, apocynin; or a cell-permeable ROS scavenger, N-acetyl cysteine (NAC). Ang II pretreatment improved postischemic ventricular recovery; reduced myocardial infarction; and decreased the number of cardiomyocyte apoptosis, indicating its ability to precondition the heart against ischemic injury. Both apocynin and NAC almost abolished the preconditioning ability of Ang II. Ang II resulted in increase in ROS activity in the heart, which was reduced by either NAC or apocynin. Ang II also increased both the NADPH oxidase subunits gp91 phox and p22phox mRNA expression, which was abolished with apocynin and NAC. Our results thus demonstrate that the Ang II preconditioning was associated with enhanced ROS activities and increased NADPH oxidase subunits p22phox and gp91phox expression. Both NAC and apocynin reduced ROS activities simultaneously abolishing preconditioning ability of Ang II, suggesting that Ang II preconditioning occurs through redox cycling. That both NAC and apocynin reduced ROS activities and abolished Ang II-mediated increase in p22phox and gp91phox activity further suggest that such redox cycling occurs via both NADPH oxidase-dependent and -independent pathways.  相似文献   

16.
Decreased synaptic transmission in parasympathetic ganglia contributes to abnormal parasympathetic function in heart failure (HF). Because nicotinic ACh receptors (nAChR) mediate synaptic transmission at the ganglion and upregulate in response to chronic exposure to agonist in vitro, we tested the hypothesis that repeated exposures of ganglionic neurons to a nAChR agonist can prevent a loss of parasympathetic control in HF. Two sets of experiments were performed. In set 1, unpaced control dogs and dogs undergoing pacing-induced HF were treated with a repeated intravenous nicotinic agonist during the development of HF. Under conditions of sympathetic blockade, R-R responses to a bolus injection of 200 microg 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP; nicotinic agonist) were found to be increased five times over the untreated group after 6 wk. In experimental set 2, dogs treated with weekly DMPP injections and in HF were anesthetized and underwent electrical stimulation of the right vagus nerve, which showed sinus cycle length responses >10 times that of controls (P < 0.05). Complete ganglionic blockade with hexamethonium abolished all responses, confirming that synaptic transmission was mediated entirely by nAChRs in both controls and HF. Despite decreased ganglionic function leading to reduced parasympathetic control of the heart in HF, repeated exposure with a nicotinic agonist during the development of HF results in not only preserved but also supranormal effects of parasympathetic stimulation on the sinus node.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号