首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
【目的】害虫受到病原生物、化学农药作用后,会引起其体内生理生化的变化。本研究旨在阐明昆虫病原线虫和噻虫嗪联合作用下对韭菜迟眼蕈蚊Bradysia odoriphaga幼虫(韭蛆)的杀虫效果及体内保护酶和解毒酶活性的影响。【方法】采用培养皿滤纸法测定了芫菁夜蛾斯氏线虫Steinernema feltiae SF-SN(Sf)(60头/幼虫)与噻虫嗪(15 mg/L)混用对韭菜迟眼蕈蚊3龄幼虫的LT_(50);采用生化分析法比较分析不同时间下两者混用对其幼虫体内酶液蛋白质含量和体内酶[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽-S-转移酶(GSTs)和乙酰胆碱酯酶(AChE)]活性的影响。【结果】Sf与噻虫嗪混用处理韭菜迟眼蕈蚊3龄幼虫,其LT_(50)值为41.05 h,比单独使用Sf(LT_(50):167.93 h)和噻虫嗪(LT_(50):72.82 h)时分别缩短了126.88 h和31.77 h;处理后24-72 h,两者混用时对试虫的校正死亡率均显著高于两者单用,且在处理72 h时,校正死亡率达到96.61%。与对照组相比,两者混用处理后12,24和36 h时,韭蛆体内酶液蛋白质含量分别提高了13.88%,46.87%和57.99%,均显著高于对照组、Sf处理组和噻虫嗪处理组。处理24 h时,两者混用组SOD,CAT,AChE和GTSs活性分别比对照降低了47.48%,28.73%,71.04%和29.97%;处理36 h时,酶活性分别比对照降低了46.34%,42.22%,58.37%和11.87%,均显著低于对照组、Sf处理组和噻虫嗪组,比单剂具有更强的抑制作用。【结论】Sf和噻虫嗪联合作用韭菜迟眼蕈蚊3龄幼虫后,其LT_(50)值比两者单用时显著缩短,且对幼虫体内SOD,CAT,AChE和GSTs活性均具有更强的抑制作用。  相似文献   

2.
【目的】昆虫病原线虫受到化学农药作用后,其对害虫的杀虫效果和搜寻效应可能会发生变化。本研究旨在探讨噻虫嗪处理的昆虫病原线虫对韭菜迟眼蕈蚊Bradysia odoriphaga幼虫(韭蛆)的杀虫效果及搜寻效应的影响。【方法】采用培养皿滤纸法,通过功能反应试验测定了噻虫嗪(15 mg/L)处理的芫菁夜蛾斯氏线虫Steinernema feltiae SF-SN (Sf)对韭蛆3龄幼虫的致死率和搜寻效应,比较噻虫嗪处理的Sf和未处理的Sf致死功能反应和搜寻效应的差异。【结果】噻虫嗪处理的Sf引起的韭蛆3龄幼虫的校正死亡率高于未处理的Sf引起的校正死亡率,处理6 h时,较未处理的Sf引起的校正死亡率提高了2.13倍。当Sf浓度固定在6 400 IJs/皿时,噻虫嗪处理的和未处理的Sf对该试虫功能反应均拟合Holling Ⅱ和Ⅲ型方程,与未处理的Sf相比,噻虫嗪处理的Sf对该试虫的攻击率(a′=0.5592)提高了42.46%,线虫寻找、寄生及致死该试虫所花费的总时间即处理时间(Th=0.0081 d)则降低了44.90%,消耗率(a′/Th)提高了2.59倍,日最大致死量(Namax)则分别提高了1.81倍(Holling Ⅱ)和1.41倍(Holling Ш)。而噻虫嗪处理的和未处理的Sf对该试虫的搜寻效应均随韭蛆密度的增加而呈线性下降。当韭蛆密度固定在40头/皿时,噻虫嗪处理的和未处理的Sf对该试虫的致死效果均随着韭蛆密度的增加而增大,搜寻效应则均先上升后下降,且噻虫嗪处理的Sf的寻找参数和相互干扰参数均高于未处理Sf的。【结论】噻虫嗪处理的Sf对韭蛆3龄幼虫的校正死亡率、瞬时攻击率、消耗率、日最大致死量和搜寻效应均高于未处理Sf的,而处理时间则显著降低。  相似文献   

3.
【目的】为明确韭菜迟眼蕈蚊Bradysia odoriphaga对新烟碱类杀虫剂的抗性水平及其抗性机制。【方法】通过测定不同地区韭菜迟眼蕈蚊对3种新烟碱类杀虫剂吡虫啉、噻虫嗪和噻虫胺的敏感度,及通过增效剂实验和酶活性测定,初步探索抗性产生机制,为韭菜迟眼蕈蚊抗性治理提供依据。【结果与结论】4个不同的韭菜迟眼蕈蚊田间种群对3种新烟碱类杀虫剂均产生了不同水平的抗性。其中,唐山种群对3种新烟碱杀虫剂均产生了较高的抗性。研究发现,唐山种群的7-乙氧基香豆素-O-脱乙基酶(ECOD)比活力为(3.89±0.31)pmol/(mg·pro·min),显著高于敏感品系。增效剂PBO对唐山种群的吡虫啉毒力的增效比为2.64,高于对敏感品系的增效比1.08。因此,P450s酶活性的升高与韭菜迟眼蕈蚊对吡虫啉的抗性有关。  相似文献   

4.
【目的】为提高昆虫病原线虫对韭菜迟眼蕈蚊Bradysia odoriphaga的防治效果,将昆虫病原线虫与环境友好型化学杀虫剂混用是一条有效途径。【方法】本研究测试了70%吡虫啉水分散颗粒剂、40%毒死蜱乳油和4.5%高效氯氰菊酯乳油对昆虫病原线虫Heterorhabdits bacteriophora Taishan strain H06品系、Steinernema carpocapsae strain SF-SN和All品系存活及侵染率的影响,及低剂量化学杀虫剂与昆虫病原线虫混用对韭蛆3龄幼虫的作用效果。【结果】高效氯氰菊酯(含量为2.00、0.40、0.20和0.10μg·mL-1)和吡虫啉(25.00、5.00、2.50和1.25μg·mL-1)对H.bacteriophora H06和S.carpocapsae All的存活无显著影响,3品系线虫毒死蜱(8.00μg·mL-1)对3品系线虫的致死率均显著高于对照;不同浓度的毒死蜱对3品系线虫的致死率存在显著差异。3种药剂分别与3品系线虫混合后处理韭蛆,韭蛆的死亡率明显高于线虫和杀虫剂单用处理。药后3 d,SF-SN与毒死蜱(8.00μg·mL-1)、吡虫啉(25.00μg·mL-1)和高效氯氰菊酯(2.00μg·mL-1)混合处理韭蛆,分别比单用杀虫剂提高防效34.20%、21.18%、54.99%,优于另外两种线虫与3种药剂混用的效果。【结论】供试线虫中,SF-SN品系与上述杀虫剂联合防治韭蛆效果最好。  相似文献   

5.
我国韭菜主产区韭菜迟眼蕈蚊田间种群的抗药性监测   总被引:1,自引:0,他引:1  
【目的】建立韭菜迟眼蕈蚊Bradysia odoriphaga Yang et Zhang对10种常用药剂的敏感基线,并对4省7个主要韭菜产区的田间种群进行6种常用杀虫剂的抗药性水平监测。【方法】采用胃毒触杀联合毒力法对韭菜迟眼蕈蚊3龄幼虫进行室内生物测定。【结果】建立了敏感品系对新烟碱类、有机磷类、菊酯类、昆虫生长调节剂类、吡咯类药剂的敏感基线。对7个地区的田间韭菜迟眼蕈蚊种群监测结果表明:其对有机磷类药剂均产生了抗药性,其中河南郑州种群对毒死蜱和辛硫磷产生了极高水平抗性;河南郑州种群对高效氯氰菊酯产生了中等水平抗性,其他各地区均处于敏感状态;大部分种群对新烟碱类药剂处于低等或中等水平抗性,但山东李坡种群对噻虫嗪产生了高水平抗性。【结论】本文建立的韭菜迟眼蕈蚊对10种杀虫剂的敏感基线及抗药性监测数据为抗性治理提供一定参考。  相似文献   

6.
【目的】明确韭菜迟眼蕈蚊Bradysiaodoriphaga Yang et Zhang雌成虫对不同虫态的行为趋性及起作用的活性物质,为开发高效引诱剂诱杀成虫的绿色防控技术提供基础。【方法】采用Y型嗅觉仪测定未交配或已交配韭菜迟眼蕈蚊雌成虫对2龄幼虫、4龄幼虫、蛹和卵块挥发物的趋性,应用固相微萃取和气-质联用仪对有引诱活性虫态挥发物进行定性和定量分析,然后进一步采用Y型嗅觉仪测定不同化学成分及比例对雌虫的引诱活性。【结果】结果表明,未交配或者已交配韭菜迟眼蕈蚊雌成虫明显嗜好4龄幼虫,而对2龄幼虫、蛹和卵块无明显趋性。韭菜迟眼蕈蚊4龄幼虫体表挥发物主要成分是二丙基二硫醚和2,2-二甲基-1,3-噻烷等二硫化物,前者含量是后者的10倍。50 mg二丙基二硫醚单体对韭菜迟眼蕈蚊交配雌成虫具有明显吸引作用,50 mg和5 mg 2,2-二甲基-1,3-噻烷单体对韭菜迟眼蕈蚊交配雌成虫具有一定吸引作用;二丙基二硫醚与2,2-二甲基-1,3-噻烷以1︰1(50 mg︰50 mg)和10︰1(50 mg︰5 mg)混合物对韭菜迟眼蕈蚊交配雌成虫具有明显吸引作用;而将二丙基二硫醚和2,2-二甲基-1,3-噻烷以10︰1(50 mg︰5 mg)混合后与50 mg二丙基二硫醚单体比较,前者对韭菜迟眼蕈蚊交配雌成虫的吸引作用更明显。【结论】韭菜迟眼蕈蚊雌成虫明显嗜好4龄幼虫,其体表挥发物二丙基二硫醚等二硫化物对韭菜迟眼蕈蚊雌成虫具有吸引作用,2,2-二甲基-1,3-噻烷对二丙基二硫醚单体吸引韭菜迟眼蕈蚊交配雌成虫具有增效作用。  相似文献   

7.
北京地区韭菜迟眼蕈蚊种群动态及越夏越冬场所调查研究   总被引:1,自引:0,他引:1  
【目的】为明确北京地区不同栽培管理模式下韭菜田全年韭菜迟眼蕈蚊Bradysia odoriphaga种群动态的发生规律及其越夏越冬场所。【方法】分别在2014—2015年通过黄色板对露地和温室韭菜田块的韭菜迟眼蕈蚊成虫进行了监测,并通过挖根和网捕的方式调查韭菜迟眼蕈蚊的越夏越冬场所及虫态。【结果】北京地区,露地韭菜田块韭菜迟眼蕈蚊每年发生3~4代,温室内可全年发生,主要为害高峰期在春秋两季;韭菜迟眼蕈蚊幼虫主要分布在0~5 cm的土壤深处;夏季韭菜迟眼蕈蚊虫口基数偏低,但主要在本地韭菜田块越夏;冬季韭菜迟眼蕈蚊主要以4龄老熟幼虫在鳞茎内或鳞茎附近的土壤中越冬。【结论】本研究阐明了北京地区不同栽培管理模式下,韭菜迟眼蕈蚊周年发生的种群动态规律及越夏越冬生物学特性,为韭菜迟眼蕈蚊的预测测报和综合防治提供理论参考依据。  相似文献   

8.
【目的】探讨昆虫病原线虫对草地贪夜蛾幼虫的侵染效果。【方法】在室内条件下采用生测试验法,测定了小卷蛾斯氏线虫AⅡ、长尾斯氏线虫X-7、夜蛾斯氏线虫SN和嗜菌异小杆线虫H06等4种昆虫病原线虫对草地贪夜蛾2龄和5龄幼虫的致死作用。【结果】小卷蛾斯氏线虫AⅡ与草地贪夜蛾数量比为50∶1时,36 h后草地贪夜蛾2龄和5龄幼虫的死亡率分别为92%和100%。长尾斯氏线虫X-7与草地贪夜蛾数量比为50∶1时,36 h后草地贪夜蛾2龄幼虫的死亡率为80%;在数量比30∶1时,36 h后草地贪夜蛾5龄幼虫死亡率为100%。夜蛾斯氏线虫SN与草地贪夜蛾数量比为400∶1时,36 h后草地贪夜蛾2龄和5龄幼虫的死亡率分别为88%和85%。嗜菌异小杆线虫H06与草地贪夜蛾在400∶1时,36 h后草地贪夜蛾2龄和5龄幼虫的死亡率分别为32%和67.5%。【结论】小卷蛾斯氏线虫AⅡ具有较好的草地贪夜蛾生物防治潜质,其次是长尾斯氏线虫X-7。  相似文献   

9.
在室内采用培养皿滤纸测定法和小杯土壤测定法测定了温度、土壤含水量和线虫剂量对异小杆属昆虫病原线虫Heterorhabditis indica LN2侵染韭菜迟眼蕈蚊Bradysia odoriphaga幼虫(韭蛆)的影响.结果表明,在测定土壤中韭菜迟眼蕈蚊幼虫与LN2线虫比分别为1:200和1:400时,韭菜迟眼蕈蚊幼虫的死亡率分别为85.4%和88.2%.LN2线虫侵染韭蛆的适宜温度为25℃~30℃、适宜土壤含水量为10%~15%.LN2线虫与常见化学农药的相容性测定结果显示,测定的化学农药中,安打、齐螨素、卡死克对LN2线虫的存活率影响显著,乐斯本和辛硫磷对LN2线虫的存活率无显著影响.  相似文献   

10.
【目的】异迟眼蕈蚊Bradysia difformis Frey的幼虫取食为害作物的地下部分,影响作物的品质,为了明确韭菜、蚕豆、生菜、白菜和甘蓝5种植物对异迟眼蕈蚊生长发育以及繁殖的影响。【方法】本试验采用室内人工饲养测定的方法,研究了5种不同植物对异迟眼蕈蚊生长发育,繁殖力和存活率的影响,并统计了其对异迟眼蕈蚊种群参数的影响。【结果】结果表明:卵到蛹的发育历期依次为甘蓝、白菜、韭菜、生菜、蚕豆;5种植物对雌雄虫寿命影响不显著,对雌虫产卵量以及蛹重均有影响,其中在韭菜上的产卵量最大,甘蓝最少,在韭菜上蛹最重,生菜上蛹最轻;异迟眼蕈蚊的存活率随着生长发育降低,总体在韭菜上的存活率高于其他寄主植物,在生菜上的存活率均最低。统计分析不同植物对异迟眼蕈蚊种群参数的影响,净增殖率和内禀增长率在韭菜上最大而在甘蓝上最小;平均世代周期在蚕豆上最短,甘蓝上最长;种群加倍时间在韭菜上最短,而在甘蓝上最长。【结论】由此可知,异迟眼蕈蚊均可以在韭菜,蚕豆,生菜,白菜和甘蓝上完成生长发育及繁殖,其对5种植物的适应性依次为:韭菜、蚕豆、白菜、甘蓝和生菜。  相似文献   

11.
The pecan weevil, Curculio caryae (Horn), is a key pest of pecans in the Southeast. Entomopathogenic nematodes have been shown to be pathogenic toward the larval stage of this pest. Before this research, only three species of nematodes had been tested against pecan weevil larvae. In this study, the virulence of the following nine species and 15 strains of nematodes toward fourth-instar pecan weevil was tested: Heterorhabditis bacteriophora Poinar (Baine, HP88, Oswego, NJ1, and Tf strains), H. indica Poinar, Karunakar & David (original and Homl strains), H. marelatus Liu & Berry (IN and Point Reyes strains), H. megidis Poinar, Jackson & Klein (UK211 strain), H. zealandica Poinar (NZH3 strain), Steinernema riobrave Cabanillas, Poinar & Raulston (355 strain), S. carpocapsae (Weiser) (All strain), S. feltiae (Filipjev) (SN strain), and S. glaseri (Steiner) (NJ43 strain). No significant difference in virulence was detected among nematode species or strains. Nematode-induced mortality was not significantly greater than control mortality (in any of the experiments conducted) for the following nematodes: H. bacteriophora (Baine), H. zealandica (NZH3), S. carpocapsae (All), S. feltiae (SN), S. glaseri (NJ43), and S. riobrave (355). All other nematodes caused greater mortality than the control in at least one experiment. Heterorhabditis megidis (UK211) but not H. indica (original) displayed a positive linear relationship between nematode concentration and larval mortality. Results suggested that, as pecan weevil larvae age, they may have become more resistant to infection with entomopathogenic nematodes.  相似文献   

12.
Entomopathogenic nematodes respond to a variety of stimuli when foraging. Previously, we reported a directional response to electrical fields for two entomopathogenic nematode species; specifically, when electrical fields were generated on agar plates Steinernema glaseri (a nematode that utilizes a cruiser-type foraging strategy) moved to a higher electric potential, whereas Steinernema carpocapsae, an ambush-type forager, moved to a lower potential. Thus, we hypothesized that entomopathogenic nematode directional response to electrical fields varies among species, and may be related to foraging strategy. In this study, we tested the hypothesis by comparing directional response among seven additional nematode species: Heterorhabditis bacteriophora, Heterorhabditis georgiana, Heterorhabditis indica, Heterorhabditis megidis, Steinernema feltiae, Steinernema riobrave, and Steinernema siamkayai. S. carpocapsae and S. glaseri were also included as positive controls. Heterorhabditids tend toward cruiser foraging approaches whereas S. siamkayai is an ambusher and S. feltiae and S. riobrave are intermediate. Additionally, we determined the lowest voltage that would elicit a directional response (tested in S. feltiae and S. carpocapsae), and we investigated the impact of nematode age on response to electrical field in S. carpocapsae. In the experiment measuring diversity of response among species, we did not detect any response to electrical fields among the heterorhabditids except for H. georgiana, which moved to a higher electrical potential; S. glaseri and S. riobrave also moved to a higher potential, whereas S. carpocapsae, S. feltiae, and S. siamkayai moved to a lower potential. Overall our hypothesis that foraging strategy can predict directional response was supported (in the nematodes that exhibited a response). The lowest electric potential that elicited a response was 0.1 V, which is comparable to electrical potential associated with some insects and plant roots. The level of response to electrical potential diminished with nematode age. These results expand our knowledge of electrical fields as cues that may be used by entomopathogenic nematodes for host-finding or other aspects of navigation in the soil.  相似文献   

13.
Anhydrobiosis is considered to be an important means of achieving storage stability of entomopathogenic nematodes that are used in biological control. This study explored the effects of anhydrobiosis on longevity and infectivity of infective juveniles (IJs) of three species of entomopathogenic nematodes Steinernema carpocapsae, Steinernema feltiae, and Steinernema riobrave at 5 and 25 degrees C. Anhydrobiosis was induced in water-dispersible granules (WG) at 0.966-0.971 water activity and 25 degrees C following a 7-day preconditioning of IJs at 5 degrees C in tap water. Survival and infectivity of the desiccated (anhydrobiotic) IJs was compared with non-desiccated IJs stored in water for different periods. Anhydrobiosis increased longevity of S. carpocapsae IJs by 3 months and of S. riobrave by 1 month in WG at 25 degrees C as compared with IJs stored in water. However, desiccation decreased S. feltiae longevity at 25 degrees C and of all three species at 5 degrees C. These results demonstrate a shelf-life of 5 months for S. carpocapsae at 25 degrees C and 9 months at 5 degrees C in WG with over 90% IJ survival. For S. feltiae, over 90% survival occurred only for 2 months at 25 degrees C and 5 months at 5 degrees C in WG. Steinernema riobrave had over 90% survival only for 1 month at 25 degrees C and the survival dropped below 85% within 1 month at 5 degrees C. Induction of anhydrobiosis in WG resulted in 85, 79 and 76% reduction in oxygen consumption by S. carpocapsae, S. feltiae, and S. riobrave IJs, respectively. Differences in IJ longevity among three species in water at 25 degrees C were related both to the initial lipid content and the rate of lipid utilisation, but not at 5 degrees C. The one-on-one infection bioassays indicated that desiccation had no negative effect on the infectivity of any of the nematode species suggesting no harmful effect on the IJs and/or their symbiotic bacteria. The species differences in IJ longevity and desiccation survival at different temperatures are discussed in relation to their foraging strategy and temperature adaptation.  相似文献   

14.
Limited storage stability is a major obstacle to further expansion of the use of entomopathogenic nematodes for pest control. Progress has been made that Steinernema carpocapsae can now be stored under partial anhydrobiosis for up to 6 months at 25°C and 10 months at 5°C in a water-dispersible granular (WG) formulation. However, other species have been more difficult to store in the WG formulation due to migration of nematodes out of the granules and sensitivity of some species to desiccation directly at cold temperatures. As acclimation to cold induces trehalose accumulation (a major cryo- and desiccation protectant) in many invertebrates, it was hypothesized that cold preacclimation of entomopathogenic nematodes will enhance their survival in the WG formulation at cold temperatures. This hypothesis was tested using a temperate species Steinernema feltiae , a subtropical species S. carpocapsae , and a tropical species Steinernema riobrave possessing different thermal niche breadths and reproduction temperature optima. Cold acclimation of infective juveniles increased trehalose accumulation in all three species and the amount of trehalose accumulated was both temperature and species dependent. Trehalose content reached at its peak after 6 days at 5°C in S. feltiae (82.28 μg/mg dry weight), after 10 days at 10°C in S. carpocapsae (94.16 μg/mg dry weight) and after 6 days at 15°C in S. riobrave (47.58 μg/mg dry weight). Cold preacclimation at 5°C for 2 days enhanced desiccation survival of S. feltiae in 25% glycerol (osmotic desiccation) at both 5 and 25° and of S. carpocapsae and S. riobrave only at 5°C. Non-cold acclimated S. carpocapsae and S. riobrave were extremely sensitive to desiccation directly at 5°C in 25% glycerol, resulting in over 98% mortality within 6 days, but S. feltiae was more sensitive to desiccation at 25°C than at 5°C. Cold preacclimation increased survival of all the three species in the WG formulation at both 5 and 25°C. The survival of S. riobrave at 5°C in the WG formulation was positively correlated with the length of preacclimation period at 5°C (R 2 = 0.99) and with the amount of trehalose accumulated during cold preacclimation (R 2 = 0.81). These results support the hypothesis that cold preacclimation enhances desiccation survival of entomopathogenic nematodes at cold temperatures and the increased survival correlates well with the increased trehalose accumulation. Results also demonstrate that cold preacclimation can be used as a tool to enhance survival of nematodes in the formulations with reduced water activity.  相似文献   

15.
In laboratory bioassays, Steinernema glaseri Steiner, Steinernema riobrave Cabanillas, Poinar & Raulston, Heterorhabditis bacteriophora Poinar, and Heterorhabditis marelatus Liu & Berry were capable of infecting and killing the bark scorpion, Centruroides exilicauda (Wood). Steinernema feltiae (Filipjev) and Steinernema carpocapsae (Weiser) failed to infect C. exilicauda at 22 degrees C. S. glaseri, H. marelatus, and H. bacteriophora caused significant mortality at 22 degrees C, indicating the potential role of these parasites as a biocontrol option. Efficacy of S. glaseri and H. bacteriophora was reduced in an assay conducted at 25 degrees C. Only S. glaseri was able to reproduce in the target host. Dissection of scorpions at the end of the experimental periods revealed inactive juvenile S. riobrave, H. marelatus, and H. bacteriophora nematodes. Both mermithid and oxyurid nematodes have been documented as nematode parasites of scorpions, but rhabditids have not been reported until now. Field studies are warranted to assess the usefulness of entomopathogenic nematodes as biocontrol agents of bark scorpions.  相似文献   

16.
Two pot experiments, one in a glasshouse and the other in an outdoor sand plunge, were conducted to examine the influence of the entomopathogenic nematodes, Steinernema feltiae and S. carpocapsae , on the invasion and development of the potato cyst nematode, Globodera rostochiensis . Of a total of eight diVerent treatments with entomopathogenic nematodes in the glasshouse trial, three reduced the invasion of G. rostochiensis and one reduced the numbers of new cysts that were produced compared with controls. In the outdoor experiment, seven of the 12 treatments gave a reduction in invasion but none resulted in changes in the numbers of cysts found at plant senescence. In general, invasion of G. rostochiensis juveniles was reduced more eVectively by S. carpocapsae than by S. feltiae , and was greatest in the outdoor trial where larger inocula of entomopathogenic nematodes were used. Overall, the results indicated that use of S. feltiae and S. carpocapsae is unlikely to provide a viable control strategy for G. rostochiensis .  相似文献   

17.
Multiple-species natural enemy approach for the biological control of the alfalfa snout beetle, Otiorhynchus ligustici (L.) (Coleoptera: Curculionidae), was compared with using single-species of natural enemies in the alfalfa ecosystem by using entomopathogenic nematodes with different dispersal and foraging behaviors. Steinernema carpocapsae NY001 (ambush nematode), Heterorhabditis bacteriophora Oswego (cruiser nematode), and Steinernema feltiae Valko (intermediate nematode) were applied in single-species, two-species combinations, and one three-species combination treatments at 2.5 x 10(9) infective juveniles per hectare. All nematode species persisted for a full year (357 d). S. carpocapsae NY001 protected the plants from root-feeding damage better than H. bacteriophora Oswego but allowed for higher larval survival than all other nematode treatments. S. feltiae Valko protected the plants better than H. bacteriophora Oswego and controlled alfalfa snout beetle larvae better than S. carpocapsae NY001. H. bacteriophora Oswego allowed for similar root damage compared with control plots but reduced larval populations better than S. carpocapsae NY001. The combination of S. carpocapsae NY001 and H. bacteriophora Oswego provided significantly better protection for the plants than the control (unlike H. bacteriophora Oswego alone) and reduced host larva survival more than S. carpocapsae NY001 alone. The combination S. feltiae Valko and H. bacteriophora Oswego could not be statistically separated from the performance of S. feltiae Valko applied alone.  相似文献   

18.
The Diaprepes root weevil, Diaprepes abbreviatus (L.) is the most severe weevil pest in Florida citrus. Entomopathogenic nematodes have effectively suppressed larval populations of D. abbreviatus. Our objective was to conduct a broad laboratory comparison of entomopathogenic nematodes for virulence toward larvae of D. abbreviatus. The study was conducted at three temperatures (20, 24, and 29 degrees C) and included nine entomopathogenic species and 17 strains: Heterorhabditis bacteriophora Poinar (Baine, NJl, Hb, Hbl, HP88, and Lewiston strains), H. indica Poinar, Karunakar & David (original and Homl strains), H. marelatus Liu & Berry (IN and Point Reyes strains), H. megidis Poinar, Jackson & Klein (UK21l strain), H. zealandica Poinar (NZH3 strain), Steinernema riobrave Cabanillas, Poinar & Raulston (355 strain), S. carpocapsae (Weiser) (All strain), S. feltiae (Filipjev) (SN and UK76 strains), and S. glaseri (Steiner) (NJ43 strain). At 20 degrees C, the greatest mortality was caused by S. riobrave although it was not significantly greater than H. bacteriophora (Baine), H. bacteriophora (Hb), H. bacteriophora (Hbl), and H. indica (original). At 24 and 29 degrees C, S. riobrave caused greater larval mortality than other nematodes tested. Two strains of H. indica, H. bacteriophora (Baine), and S. glaseri were next in terms of virulence at 29 degrees C. Our results suggest that S. riobrave has the greatest potential for control of D. abbreviatus.  相似文献   

19.
Photorhabdus luminescens (Enterobacteriaceae) is a symbiont of entomopathogenic nematodes Heterorhabditis spp. (Nematoda: Rhabditida) used for biological control of insect pests. For industrial mass production, the nematodes are produced in liquid media, pre-incubated with their bacterial symbiont, which provides nutrients essential for the nematode's development and reproduction. Particularly under in vitro conditions, P. luminescens produces phase variants, which do not allow normal nematode development. The phase variants were distinguished based on dye absorption, pigmentation, production of antibiotic substances, occurrence of crystalline inclusion proteins and bioluminescence. To understand the significance of the phase shift for the symbiotic interaction between the bacterium and the nematode, feeding experiments tested the effect of homologous and heterologous P. luminescens phase variants isolated from a Chinese Heterorhabditis bacteriophora (HO6), the Heterorhabditis megidis type strain from Ohio (HNA) and the type strain of Heterorhabditis indica (LN2) on the in vivo and in vitro development and reproduction of the nematode species H. bacteriophora (strain HO6) and another rhabditid and entomopathogenic nematode, Steinernema carpocapsae (A24). In axenically cultured insect larvae (Galleria mellonella) and in vitro in liquid media, H. bacteriophora produced offspring on phase I of its homologous symbiont and on the heterologous symbiont of H. megidis, but not on the two corresponding phase II variants. In solid media, nematode yields were much lower on phase II than on phase I variants. On the heterologous phase I symbiont isolated from H. indica the development of H. bacteriophora was not beyond the fourth juvenile stage of the nematode in any of the media tested, but further progressed on phase II with even a small amount of offspring recorded in solid media. Infective juveniles of S. carpocapsae did not develop beyond the J3 stage on all phase I P. luminescens. They died in phase I P. luminescens isolated from H. bacteriophora. Development to adults was recorded for S. carpocapsae on all phase II symbionts and offspring were produced in all media except in liquid. It is concluded that a lack of essential nutrients or the production of toxins is not responsible for the negative impact of homologous phase II symbiont cells on the development and reproduction of H. bacteriophora. The infective juveniles of H. bacteriophora retained cells of the homologous phase I symbiont, but not phase II cells and cells from heterologous symbionts, indicating that the transmission of the symbiont by the infective juvenile is selective for phase I cells and the homologous bacterial associate.  相似文献   

20.
An improved calcium alginate gel formulation was developed and tested as a carrier for entomopathogenic nematodes against Spodoptera littoralis and Helicoverpa armigera larvae. Mortality of 100% was caused in 4th instar larvae of the two insects by feeding them on 1000 infective juveniles (IJ) g -1 of Steinernema carpocapsae (ALL strain) in the gel for 24 h. Exposing 2nd to 5th instars of H. armigera and 3rd to 6th of S. littoralis to 500 IJ g -1 of S. carpocapsae (ALL strain) resulted in 70-100% larval mortality. Mature larvae were less susceptible to the nematodes. Mortality of larvae exposed to 500 IJg -1 of S. carpocapsae (ALL strain) ranged from about 45-55% at 4 h to 90-95% at 48 h. Fourth instar larvae fed for 24 h with 250 IJ g -1 of nematode strains in gel showed in S. littoralis ranges of susceptibility in the following descending order: S. feltiae (IS -7 strain) = S. carpocapsae (DT strain) = S. feltiae (IS-6 strain) > S. carpocapsae (Mexican strain) = S. carpocapsae (ALL strain) = Heterorhabditis bacteriophora (HP-88 strain) = H sp. (IS-5 strain) > S. riobravae (Texas strain); in H. armigera the rating was: S. feltiae (IS-7 strain) = H. bacteriophora (HP88 strain) > S. carpocapsae (ALL strain) = S. feltiae (IS-6 strain ) = Heterorhabditis sp. (IS5 strain) > S. carpocapsae (Mexican strain) > S. riobravae (Texas strain) . The number of nematodes per larval cadaver increased with mortality rates. In greenhouse tests at 28 &#45 2°C and 90% relative humidity, gel discs containing 500 IJ g -1 of nematodes were pinned to leaves of potted plants of cotton ( Gossypium hirsutum ) (Acala SJ2) and the plants were offered to S. littoralis larvae. Larval mortality of 89 &#45 12.7% was caused by S. feltiae (IS-7 strain) and most of the plant leaves were protected against the larvae by the nematodes. In the control, larval mortality was 3.3 &#45 0.05% and the plants were almost completely defoliated. Possibilities of using the gel-nematode formulation to protect sheltered crops against insect pests are discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号