首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
剪切应力下内皮细胞内皮素及其mRNA的表达   总被引:4,自引:0,他引:4  
应用Northern印迹方法研究高血压(SHR)和正常(WKY)大鼠脑微血管培养内皮细胞,在剪切应力0、0.5、1、2Pa作用下24h后检测内皮素及其基因mRNA表达上的区别。结果表明,在剪切应力0、0.5、1Pa下,WKY大鼠的内皮细胞随着剪切应力加大,其内皮素水平及其基因的mRNA的表达均比WKY相应组的为高。在剪切应力2Pa时,WKY和SHR大鼠的内皮细胞内皮素及其基因的mRNA表达水平不同  相似文献   

2.
Shear stress is known to dilate blood vessels and exert an antiproliferative effect on vascular walls. These effects have partly been ascribed to shear stress-induced regulation of the secretion of endothelium-derived vasoactive substances. In this study, to elucidate the role of shear stress in endothelin production by endothelial cells, we examined the effect of physiological shear stress on the mRNA expression of endothelin-converting enzyme-1 (ECE-1) as well as endothelin-1 (ET-1) in cultured bovine carotid artery endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs), using a parallel plate-type flow chamber. ECE-1 mRNA expression was significantly down-regulated by shear stress in an intensity- and time-dependent manner within the physiological range (1.5 to 15 dyn/cm(2)). ET-1 mRNA expression decreased together with ECE-1 mRNA expression. Shear stress at 15 dyn/cm(2) for 30 min induced a significant increase in the intracellular peroxide concentration, and the down-regulation of ECE-1 and ET-1 mRNA expression by shear stress was attenuated almost completely on treatment with N-acetyl cysteine (NAC), an antioxidant (20 mM). Furthermore, when H(2)O(2) (0.5 to 2 mM) was added to BAECs in static culture, the ECE-1 as well as ET-1 mRNA expression was attenuated in proportion to the concentration of H(2)O(2). It is suggested that endothelial cells sense shear stress as oxidative stress and transduce signal for the regulation of the gene expression of ECE as well as ET to attenuate vascular tone and inhibit the proliferation of vascular smooth muscle cells.  相似文献   

3.
4.
Placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression increase during pregnancy. Shear stress, the frictional force exerted on endothelial cells by blood flow, stimulates vessel dilation, endothelial NO production, and eNOS expression. In order to study the effects of pulsatile flow/shear stress, we adapted Cellco CELLMAX artificial capillary modules to study ovine fetoplacental artery endothelial (OFPAE) cells for NO production and eNOS expression. OFPAE cells were grown in the artificial capillary modules at 3 dynes/cm2. Confluent cells were then exposed to 10, 15, or 25 dynes/cm2 for up to 24 h. NO production by OFPAE cells exposed to pulsatile shear stress was inhibited to nondetectable levels by the NOS inhibitor l-NMMA and reversed by excess NOS substrate l-arginine. NO production and expression of eNOS mRNA and protein by OFPAE cells were elevated by shear stress in a graded fashion (P < 0.05). The rise in NO production with 25 dynes/cm2 shear stress (8-fold) was greater (P < 0.05) than that observed for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). The acute shear stress-induced rise in NO production by OFPAE cells was via eNOS activation, whereas the prolonged NO rise occurred by elevations in both eNOS expression and enzyme activation. Thus, elevations of placental blood flow and physiologic shear stress may be partly responsible for the increases in placental arterial endothelial eNOS expression and NO production during pregnancy.  相似文献   

5.
Mammalian cells responds to physical forces by altering their growth rate, morphology, metabolism, and genetic expression. We have studied the mechanism by which these cells detect the presence of mechanical stress and convert this force into intracellular signals. As our model systems, we have studied cultured human endothelial cells, which line the blood vessels and forms the interface between the blood and the vessel wall. These cell responds within minutes to the initiation of flow by increasing their arachidonic acid metabolism and increasing the level of the intracellular second messengers inositol trisphosphate and calcium ion concentration. With continued exposure to arterial levels of wall shear stress for up to 24 h, endothelial cells increase the expression of tissue plasminogen activator (tPA) and tPA messenger RNA (mRNA) and decrease the expression of endothelin peptide and endothelin mRNA. Since the initiation of flow also causes enhanced convective mass transfer to the endothelial cell monolayer, we have investigated the role of enhanced convection of adenosine trisphosphate (ATP) to the cell surface in eliciting a cellular response by monitoring cytosolic calcium concentrations on the single cell level and by computing the concentration profile of ATP in a parallel-plate flow geometry. Our result demonstrate that endothelial cells respond in very specific ways to the initiation of flow and that mass transfer and fluid shear stress can both play a role in the modulation of intracellular signal transduction and metabolism.  相似文献   

6.
剪切应力对毛细血管内皮细胞代谢的影响   总被引:2,自引:2,他引:0  
建立的平行平板流协腔装置适用于研究血管内皮细胞代谢对剪切流场的响应。将培养的人胚肾小球血管单层内皮细胞置于剪应力分别为5*10^-5N/cm^2,1*10^-4N/cm^2和1.5*10^-4N/cm^2的定常层流中剪切25小时。  相似文献   

7.
The hepatopulmonary syndrome (HPS) results from intrapulmonary vasodilation in the setting of cirrhosis and portal hypertension. In experimental HPS, pulmonary endothelial endothelin B (ET(B)) receptor overexpression and increased circulating endothelin-1 (ET-1) contribute to vasodilation through enhanced endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) production. In both experimental cirrhosis and prehepatic portal hypertension, ET(B) receptor overexpression correlates with increased vascular shear stress, a known modulator of ET(B) receptor expression. We investigated the mechanisms of pulmonary endothelial ET(B) receptor-mediated eNOS activation by ET-1 in vitro and in vivo. The effect of shear stress on ET(B) receptor expression was assessed in rat pulmonary microvascular endothelial cells (RPMVECs). The consequences of ET(B) receptor overexpression on ET-1-dependent ET(B) receptor-mediated eNOS activation were evaluated in RPMVECs and in prehepatic portal hypertensive animals exposed to exogenous ET-1. Laminar shear stress increased ET(B) receptor expression in RPMVECs without altering mRNA stability. Both shear-mediated and targeted overexpression of the ET(B) receptor enhanced ET-1-mediated ET(B) receptor-dependent eNOS activation in RPMVECs through Ca(2+)-mediated signaling pathways and independent of Akt activation. In prehepatic portal hypertensive animals relative to control, ET-1 administration also activated eNOS independent of Akt activation and triggered HPS. These findings support that increased pulmonary microvascular endothelial ET(B) receptor expression modulates ET-1-mediated eNOS activation, independent of Akt, and contributes to the development of HPS.  相似文献   

8.
Laminar shear stress exerts potent anti-apoptotic effects. Therefore, we analyzed the influence of laminar shear stress on the expression of apoptosis-regulating genes in human umbilical vein endothelial cells (HUVEC). Application of high levels of laminar shear stress (15 and 30 dyn/cm(2)) decreased the susceptibility of HUVEC to undergo apoptosis, whereas low shear stress (1 dyn/cm(2)) had no effect. These diminished signs of apoptosis were accompanied by a decreased mRNA expression of apoptosis-inducing Fas receptor. Furthermore, mRNA and protein expression of anti-apoptotic, soluble Fas isoform FasExo6Del and anti-apoptotic Bcl-x(L) were induced. Surprisingly, high shear stress also elevated mRNA and protein expression of pro-apoptotic Bak. The shear stress-induced up-regulation of Bcl-x(L) and Bak mRNA can be abrogated by inhibition of the endothelial NO synthase. We propose that altered expression of Bcl-x(L) and the Fas system is involved in the protective effect of laminar shear stress against apoptosis in human endothelial cells.  相似文献   

9.
Hemodynamic forces have profound effects on vasculature. Laminar shear stress upregulates superoxide dismutase (SOD) expression in endothelial cells. SOD converts superoxide anion to H(2)O(2), which, however, promotes atherosclerosis. Therefore, defense against H(2)O(2) may be crucial in reducing oxidative stress. Since glutathione peroxidase (GPx-1) reduces H(2)O(2) to H(2)O, the regulation of GPx-1 expression by mechanical stress was examined. Cultured bovine aortic endothelial cells (BAECs) were subjected to laminar shear stress and stretch force. Shear stress upregulated GPx-1 mRNA expression in a time- and force-dependent manner in BAECs, whereas stretch force was without effect. Furthermore, shear stress increased GPx activity. L-NAME, an inhibitor of nitric oxide synthase, did not affect shear stress-induced GPx-1 mRNA expression. The ability of laminar shear stress to induce GPx-1 expression in endothelial cells may be an important mechanism whereby shear stress protects vascular cells against oxidative stress.  相似文献   

10.
The effects of shear stress on interleukin 8 (IL-8) production by human umbilical vein endothelial cells (HUVEC) were studied by subjecting the HUVEC to a steady flow laminar shear stress of up to 0.7 N/m(2) in a parallel plate flow chamber. Shear stress decreased IL-8 mRNA expression in a dose and time-dependent fashion. High glucose concentrations increased IL-8 mRNA levels in a MAPK-p38-dependent manner, which was suppressed by shear stress. Measurement of IL-8 protein in HUVEC culture media by ELISA demonstrated that IL-8 secretion was also increased by high glucose and suppressed by shear stress. These results suggest that the anti-atherogenic effect of shear stress arises partly from the suppression of the production of IL-8 which has been shown to trigger the adhesion of monocytes to a vascular endothelium and also acts as a mitogen and chemoattractant for vascular smooth muscle cells.  相似文献   

11.
Chen H  Wu L  Liu X  Chen Y  Wang B 《Biorheology》2003,40(1-3):53-58
In order to demonstrate that IL-8 mRNA expression in endothelial cells is not only regulated by chemical factors, but also by mechanical factors, in this article, after pretreating cultured human umbilical vein endothelial cells (HUVECs) with shear stress for different time, we employed both RT-PCR to assay IL-8 mRNA expression and immunocytochemical staining to detect NF-kappaB activation in HUVECs. We found that: (i) IL-8 mRNA expressed little in HUVECs untreated or pretreated with low laminar shear stress for 0.5 hour; IL-8 mRNA expression was increased when HUVECs were pretreated with low laminar shear stress for 1 hour, and increased further when pretreated for 2 hours; (ii) the immunoreactivity of NF-kappaB p65 in the nuclei of HUVECs untreated or pretreated with low laminar shear stress for 0.5 hour was negative, while it became weak positive in the nuclei of HUVECs pretreated with shear stress for 1 hour and positive in the nuclei of HUVECs pretreated for 2 hours. The results imply that low laminar shear stress was capable of inducing IL-8 gene expression and activating NF-kappaB, which were both time-dependent. The induction of IL-8 gene expression by laminar shear stress is probably due to the activation of NF-kappaB. We suggest that IL-8 mRNA expression in endothelial cells induced by low shear stress may play a key role in the pathogenesis and development of both inflammation and arterioatherosclerosis.  相似文献   

12.
The interplay between shear stress and cytokines in regulating vascular endothelial function remains largely unexplored. In the present study, the potential role of shear stress in regulating tumor necrosis factor-alpha (TNF-alpha)-induced gene expression in endothelial cells (ECs) was investigated. The TNF-alpha-induced monocyte chemotactic protein-1 (MCP-1) mRNA expressions were significantly attenuated in ECs subjected to a high level of shear stress (20 dynes/cm2) for 4 or 24 h prior to the addition of TNF-alpha in the presence of flow. Less inhibition of TNF-alpha-induced MCP-1 mRNA expression was found in ECs pre-exposed to a low level of shear stress (1.2 dynes/cm2) for 24 h as compared with the cells presheared (pre-exposed to shear stress) for 4 h. Simultaneous exposure of ECs to TNF-alpha and a high or low level of shear stress down-regulated TNF-alpha-induced MCP-1 gene expressions, suggesting that the post-flow condition modulates endothelial responses to cytokine stimulation. Individually or combined, an endothelial nitric oxide synthase (eNOS) inhibitor and a glutathione (GSH) biosynthesis inhibitor had no effect on this shear stress-mediated inhibition. Moreover, in ECs either presheared or remained in a static condition prior to stimulation by TNF-alpha while under shear flow, the ability of TNF-alpha to induce AP-1-DNA binding activity in the nucleus was reduced. Our findings suggest that shear stress plays a protective role in vascular homeostasis by inhibiting endothelial responses to cytokine stimulation.  相似文献   

13.
14.
Endothelin is a potent vasoconstrictor peptide produced by vascular endothelial cells. Incubation of the serum-deprived confluent porcine aortic endothelial cells with 10-300 pM TGF-beta 1, resulted in a several fold increase in endothelin mRNA levels with a peak time of 2 h. An enzyme-linked immunosorbent assay revealed that the levels of endothelin in endothelial cell conditioned media was also increased by TGF-beta 1. These results suggest that TGF-beta 1, secreted by activated platelets, is involved not only in wound healing, but in the regulation of local vascular tone by stimulating endothelin production in the endothelial cells.  相似文献   

15.
16.
17.
Hepatopulmonary syndrome (HPS) following rat common bile duct ligation results from pulmonary molecular changes that may be influenced by circulating TNF-alpha and increased vascular shear stress, through activation of NF-kappaB or Akt. Increased pulmonary microvascular endothelin B (ET(B)) receptor and endothelial nitric oxide synthase (eNOS) levels contribute to nitric oxide production and the development of experimental HPS. Pentoxifylline (PTX), a phosphodiesterase and nonspecific TNF-alpha inhibitor, ameliorates experimental HPS when begun before hepatic injury. However, how PTX influences the molecular events associated with initiation of experimental HPS after liver injury is established is unknown. We assessed the effects of PTX on the molecular and physiological features of HPS in vivo and on shear stress or TNF-alpha-mediated events in rat pulmonary microvascular endothelial cells in vitro. PTX significantly improved HPS without altering portal or systemic hemodynamics and downregulated pulmonary ET(B) receptor levels and eNOS expression and activation. These changes were associated with a reduction in circulating TNF levels and NF-kappaB activation and complete inhibition of Akt activation. In rat pulmonary microvascular endothelial cells, PTX inhibited shear stress-induced ET(B) receptor and eNOS expression and eNOS activation. These effects were also associated with inhibition of Akt activation and were reproduced by wortmanin. In contrast, TNF-alpha had no effects on endothelial ET(B) and eNOS alterations in vitro. PTX has direct effects in the pulmonary microvasculature, likely mediated through Akt inhibition, that ameliorate experimental HPS.  相似文献   

18.
Fluid shear stress modulates the functional responses of platelets and vascular cells, and plays an important role in the pathogenesis of vascular disorders, including atherosclerosis and restenosis. Since shear stress induces activation of platelets, which abundantly store sphingosine 1-phosphate (Sph-1-P), and upregulates the mRNA expression of S1P(1), the most important Sph-1-P receptor expressed on the endothelial cells, we examined the effects of shear stress on the Sph-1-P-related responses involving these cells. Shear stress was found to induce Sph-1-P release from the platelets in a shear intensity- and time-dependent manner. Inhibitors of protein kinase C suppressed this mechanical force-induced Sph-1-P release, suggesting involvement of this kinase. On the other hand, in vascular endothelial cells, shear stress increased S1P(1) protein expression, as revealed by flow-cytometric analysis, and the responsiveness to Sph-1-P, which was assessed by monitoring the intracellular Ca(2+) concentration. These results indicate that shear stress enhances the Sph-1-P responses in cell-cell interactions between platelets and endothelial cells.  相似文献   

19.
Vascular endothelial cells areconstantly exposed to oxidative stress and must be protected byphysiological responses. In diabetes mellitus, endothelial cellpermeability is impaired and may be increased by high extracellularglucose concentrations. It has been postulated that metallothionein(MT) can protect endothelial cells from oxidative stress with itsincreased expression by cytokines, thrombin, and endothelin (ET)-1. Inthis study, we demonstrate that high glucose concentration can induceMT expression in endothelial cells through a distinct ET-dependentpathway. Exposure of human umbilical vein endothelial cells (HUVEC) toincreasing concentrations of glucose resulted in a rapid dose-dependentincrease in MT-2 and ET-1 mRNA expression. MT expression may be furtheraugmented with addition of ET-1. Preincubation of the cells with thespecific ETB antagonist BQ-788 blocked MT-2 mRNA expressionmore effectively than the ETA inhibitor TBC-11251. Highglucose also increased immunoreactive MT protein expression and inducedtranslocation of MT into the perinuclear area. Perinuclear localizationof MT was related to high-glucose-induced reorganization of F-actin filaments. These results demonstrate that an increase in extracellular glucose in HUVEC can lead to a rapid dose-dependent increase in MT-2mRNA expression and to perinuclear localization of MT protein withchanges to the cytoskeleton. These effects are mediated via the ETreceptor-dependent pathway.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号