首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 281 毫秒
1.
We have examined the exposure and conservation of antigenic epitopes on the surface envelope glycoproteins (gp120 and gp41) of 26 intact, native, primary human immunodeficiency virus type 1 (HIV-1) group M virions of clades A to H. For this, 47 monoclonal antibodies (MAbs) derived from HIV-1-infected patients were used which were directed at epitopes of gp120 (specifically V2, C2, V3, the CD4-binding domain [CD4bd], and C5) and epitopes of gp41 (clusters I and II). Of the five regions within gp120 examined, MAbs bound best to epitopes in the V3 and C5 regions. Only moderate to weak binding was observed by most MAbs to epitopes in the V2, C2, and CD4bd regions. Two anti-gp41 cluster I MAbs targeted to a region near the tip of the hydrophilic immunodominant domain bound strongly to >90% of isolates tested. On the other hand, binding of anti-gp41 cluster II MAbs was poor to moderate at best. Binding was dependent on conformational as well as linear structures on the envelope proteins of the virions. Further studies of neutralization demonstrated that MAbs that bound to virions did not always neutralize but all MAbs that neutralized bound to the homologous virus. This study demonstrates that epitopes in the V3 and C5 regions of gp120 and in the cluster I region of gp41 are well exposed on the surface of intact, native, primary HIV-1 isolates and that cross-reactive epitopes in these regions are shared by many viruses from clades A to H. However, only a limited number of MAbs to these epitopes on the surface of HIV-1 isolates can neutralize primary isolates.  相似文献   

2.
Visna virus undergoes antigenic drift during persistent infection in sheep and thus eludes neutralizing antibodies directed against its major envelope glycoprotein, gp135. Antigenic variants contain point mutations in the 3' end of the genome, presumably within the envelope glycoprotein gene. To localize the changes in the viral proteins of antigenic mutants, we isolated 35 monoclonal antibodies (MAbs) against the envelope glycoprotein gp135 or the major core protein p27 of visna virus. The MAbs defined five partially overlapping epitopes on gp135. We used the MAbs and polyclonal immune sera directed against visna virus, gp135, or p27 in enzyme-linked immunosorbent assays to compare visna virus (strain 1514) with antigenic mutants (LV1-1 to LV1-6) previously isolated from a single sheep persistently infected with plaque-purified strain 1514. Polyclonal immune sera and anti-core p27 MAbs failed to distinguish antigenic differences among the viruses. By contrast, the anti-gp135 MAbs detected changes in all five epitopes of the envelope glycoprotein. Three gp135 epitopes, prominently exposed on strain 1514, were lost or obscured on the mutants; two covert gp135 epitopes, poorly exposed on strain 1514, were reciprocally revealed on the mutants. Even virus LV1-2, which is indistinguishable from parental strain 1514 by serum neutralization tests and which differs from it by only two unique oligonucleotides on RNase-T1 fingerprinting, displayed global changes in gp135. Our data suggest that visna virus variants may emerge more frequently during persistent infection than can be detected by serological tests involving the use of polyclonal immune sera, and the extent of phenotypic changes in their envelope glycoproteins may be greater than predicted by the small number of genetic changes previously observed. We suggest that topographical rearrangements in the three-dimensional structure of gp135 may magnify the primary amino acid sequence changes caused by point mutations in the env gene. This may complicate strategies to construct lentiviral vaccines by using the envelope glycoprotein.  相似文献   

3.
We have probed the structures of monomeric and oligomeric gp120 glycoproteins from the LAI isolate of human immunodeficiency virus type 1 (HIV-1) with a panel of monoclonal antibodies (MAbs); most of these MAbs are directed against continuous epitopes. On native monomeric gp120, most of the first conserved (C1) domain is accessible to MAbs, although some regions of C1 are relatively inaccessible. All of the MAbs directed against the C2, C3, and C5 domains bind preferentially to denatured monomeric gp120, indicating that these regions of gp120 are poorly accessible on the native monomer, although the extreme C terminus in C5 is well exposed. Segments of the V1, V2, and V3 loops are exposed on the surface of monomeric gp120, although the base of the V3 loop is inaccessible. A portion of C4 is also available for MAb binding on monomeric gp120, as is the extreme C terminus in C5. However, on oligomeric gp120-gp41 complexes, only the V2 and V3 loops (and perhaps V1) are well exposed and a segment of the C4 region is partially exposed; continuous epitopes in C1 and C5 that are accessible to antibodies on monomeric gp120 are occluded on the oligomer. Although deletion of the V1, V2, and V3 loops resulted in increased exposure of several discontinuous epitopes overlapping the CD4-binding site, the exposure of most continuous epitopes on the monomeric gp120 glycoprotein was not affected. These results imply a HIV-1 gp120 structure in which the conserved continuous determinants are inaccessible; in some cases, this inaccessibility is due to intramolecular interactions between conserved regions, and in other cases, it is due to intermolecular interactions with other components of the glycoprotein spike. These findings have implications for the design of subunit vaccines based on gp120.  相似文献   

4.
HIV-1 neutralizing monoclonal antibodies (MAbs) define key targets for vaccine development and are being considered for passive prevention of infection. We analyzed the interaction of MAbs to two independent epitopes on the viral envelope glycoprotein. Potently neutralizing MAbs to the CD4 binding site and V1V2 region displayed no in vitro cross-competition and displayed additive, though not synergistic, neutralization activity. Predicted neutralization coverage of a combination of two MAbs reached 97% on a 208-isolate panel.  相似文献   

5.
Forty-six monoclonal antibodies (MAbs) able to bind to the native, monomeric gp120 glycoprotein of the human immunodeficiency virus type 1 (HIV-1) LAI (HXBc2) strain were used to generate a competition matrix. The data suggest the existence of two faces of the gp120 glycoprotein. The binding sites for the viral receptor, CD4, and neutralizing MAbs appear to cluster on one face, which is presumably exposed on the assembled, oligomeric envelope glycoprotein complex. A second gp120 face, which is presumably inaccessible on the envelope glycoprotein complex, contains a number of epitopes for nonneutralizing antibodies. This analysis should be useful for understanding both the interaction of antibodies with the HIV-1 gp120 glycoprotein and neutralization of HIV-1.  相似文献   

6.
The human serum human immunodeficiency virus type 1 (HIV-1)-neutralizing serum 2 (HNS2) neutralizes many primary isolates of different clades of HIV-1, and virus expressing envelope from the same donor, clone R2, is neutralized cross-reactively by HIV-immune human sera. The basis for this cross-reactivity was investigated. It was found that a rare mutation in the proximal limb of variable region 3 (V3), 313-4 PM, caused virus pseudotyped with the R2 envelope to be highly sensitive to neutralization by monoclonal antibodies (MAbs) directed against conformation-sensitive epitopes at the tip of the V3 loop, such as 19b, and moderately sensitive to MAbs against CD4 binding site (CD4bs) and CD4-induced (CD4i) epitopes, soluble CD4 (sCD4), and HNS2. In addition, introduction of this sequence by mutagenesis caused enhanced sensitivity to neutralization by 19b, anti-CD4i MAb, and HNS2 in three other primary HIV-1 envelopes and by anti-CD4bs MAb and sCD4 in one of the three. The 313-4 PM sequence also conferred increased infectivity for CD4(+) CCR5(+) cells and the ability to infect CCR5(+) cells upon all of these four and two of these four HIV-1 envelopes, respectively. Neutralization of R2 by HNS2 was substantially inhibited by the cyclized R2 V3 35-mer synthetic peptide. Similarly, the peptide also had some lesser efficacy in blocking neutralization of R2 by other sera or of neutralization of other primary viruses by HNS2. Together, these results indicate that the unusual V3 mutation in the R2 clone accounts for its uncommon neutralization sensitivity phenotype and its capacity to mediate CD4-independent infection, both of which could relate to immunogenicity and the neutralizing activity of HNS2. This is also the first primary HIV-1 isolate envelope glycoprotein found to be competent for CD4-independent infection.  相似文献   

7.
A number of monoclonal antibodies (MAbs) with various levels of neutralizing activity that recognize epitopes in the V1/V2 domain of LAI-related gp120s have been described. These include rodent antibodies directed against linear and conformational epitopes and a chimpanzee MAb, C108G, with extremely potent neutralizing activity directed against a glycan-dependent epitope. A fusion glycoprotein expression system that expressed the isolated V1/V2 domain of gp120 in native form was used to analyze the structural characteristics of these epitopes. A number of MAbs (C108G, G3-4, 684-238, SC258, 11/68b, 38/66a, 38/66c, 38/62c, and CRA3) that did not bind with high affinity to peptides immunoprecipitated a fusion glycoprotein expressing the V1/V2 domain of HXB2 gp120 in the absence of other human immunodeficiency virus sequences, establishing that their epitopes were fully specified within this region. Biochemical analyses indicated that in the majority of V1/V2 fusion molecules only five of the six glycosylation signals in the V1/V2 domain were utilized, and the glycoforms were found to be differentially recognized by particular MAbs. Both C108G and MAbs directed against conformational epitopes reacted with large fractions of the fully glycosylated molecules but with only small fractions of the incompletely glycosylated molecules. Mutational analysis of the V1 and V2 glycosylation signals indicated that in most cases the unutilized site was located either at position 156 or at position 160, suggesting the occurrence of competition for glycan addition at these neighboring positions. Mutation of glycosylation site 160 destroyed the C108G epitope but increased the fraction of the molecules that presented the conformational epitopes, while mutation of the highly conserved glycosylation site at position 156 greatly diminished the expression of the conformational epitopes and increased expression of the C108G epitope. Similar heterogeneity in glycosylation was also observed when the HXB2 V1/V2 fusion glycoprotein was expressed without most of the gp70 carrier protein, and thus, this appeared to be an intrinsic property of the V1/V2 domain. Heterogeneity in expression of conformational and glycan-dependent epitopes was also observed for the natural viral env precursor, gPr160, but not for gp120. These results suggested that the closely spaced glycosylation sites 156 and 160 are often alternatively utilized and that the pattern of glycosylation at these positions affects the formation of the conformational structures needed for both expression of native epitopes in this region and processing of gPr160 to mature env products.  相似文献   

8.
Evidence from clinical and experimental studies of human and chimpanzees suggests that hepatitis C virus (HCV) envelope glycoprotein E2 is a key antigen for developing a vaccine against HCV infection. To identify B-cell epitopes in HCV E2, six murine monoclonal antibodies (MAbs), CET-1 to -6, specific for HCV E2 protein were generated by using recombinant proteins containing E2t (a C-terminally truncated domain of HCV E2 [amino acids 386 to 693] fused to human growth hormone and glycoprotein D). We tested whether HCV-infected sera were able to inhibit the binding of CET MAbs to the former fusion protein. Inhibitory activity was observed in most sera tested, which indicated that CET-1 to -6 were similar to anti-E2 antibodies in human sera with respect to the epitope specificity. The spacial relationship of epitopes on E2 recognized by CET MAbs was determined by surface plasmon resonance analysis and competitive enzyme-linked immunosorbent assay. The data indicated that three overlapping epitopes were recognized by CET-1 to -6. For mapping the epitopes recognized by CET MAbs, we analyzed the reactivities of CET MAbs to six truncated forms and two chimeric forms of recombinant E2 proteins. The data suggest that the epitopes recognized by CET-1 to -6 are located in a small domain of E2 spanning amino acid residues 528 to 546.  相似文献   

9.
Antibodies (Abs) against the V3 loop of the human immunodeficiency virus type 1 gp120 envelope glycoprotein were initially considered to mediate only type-specific neutralization of T-cell-line-adapted viruses. However, recent data show that cross-neutralizing V3 Abs also exist, and primary isolates can be efficiently neutralized with anti-V3 monoclonal Abs (MAbs). The neutralizing activities of anti-V3 polyclonal Abs and MAbs may, however, be limited due to antigenic variations of the V3 region, a lack of V3 exposure on the surface of intact virions, or Ab specificity. For clarification of this issue, a panel of 32 human anti-V3 MAbs were screened for neutralization of an SF162-pseudotyped virus in a luciferase assay. MAbs selected with a V3 fusion protein whose V3 region mimics the conformation of the native virus were significantly more potent than MAbs selected with V3 peptides. Seven MAbs were further tested for neutralizing activity against 13 clade B viruses in a single-round peripheral blood mononuclear cell assay. While there was a spectrum of virus sensitivities to the anti-V3 MAbs observed, 12 of the 13 viruses were neutralized by one or more of the anti-V3 MAbs. MAb binding to intact virions correlated significantly with binding to solubilized gp120s and with the potency of neutralization. These results demonstrate that the V3 loop is accessible on the native virus envelope, that the strength of binding of anti-V3 Abs correlates with the potency of neutralization, that V3 epitopes may be shared rather than type specific, and that Abs against the V3 loop, particularly those targeting conformational epitopes, can mediate the neutralization of primary isolates.  相似文献   

10.
Critical epitopes in transmissible gastroenteritis virus neutralization.   总被引:23,自引:13,他引:10       下载免费PDF全文
Purified transmissible gastroenteritis (TGE) virus was found to be composed of three major structural proteins having relative molecular weights of 200,000, 48,000, and 28,000. The peplomer glycoprotein was purified by affinity chromatography with the monoclonal antibody (MAb) 1D.G3. A collection of 48 MAbs against TGE virus was developed from which 26, 10, and 3 were specific for proteins E2, N, and E1, respectively. A total of 14 neutralizing MAbs of known reactivity were E2 protein specific. In addition, MAb 1B.C11, of unknown specificity, was also neutralizing. These MAbs reduced the virus titer 10(2)- to 10(9)-fold. Six different epitopes critical in TGE virus neutralization were found, all of which were conformational based on their immunogenicity and antigenicity. Only the epitope defined by MAb 1G.A7 was resistant to sodium dodecyl sulfate treatment, although it was destroyed by incubation in the presence of both the detergent and beta-mercaptoethanol. The frequency of MAb-resistant (mar) mutants selected with four MAbs (1G.A7, 1B.C11, 1G.A6, and 1E.F9) ranged from 10(-6) to 10(-7), whereas the frequency of the putative mar mutant defined by MAb 1B.B11 was lower than 10(-9). Furthermore, the epitopes defined by these MAbs and by MAbs 1H.C2 and 1A.F10, were present in 11 viral isolated with different geographical locations, years of isolation, and passage numbers (with the exception of two epitopes absent or modified in the TOY 56 viral isolate), suggesting that the critical epitopes in TGE virus neutralization were highly conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号