首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
中国甜瓜种质资源形态性状遗传多样性分析   总被引:6,自引:0,他引:6  
对我国各地257份代表性的甜瓜种质资源的20个形态性状进行调查分析,研究其遗传多样性。结果表明,7个质量性状(果实形状、果皮底色、覆纹颜色、覆纹形状、果肉颜色、果肉质地和种子颜色)和6个数量性状(果实横径、果实纵径、单果鲜重、果肉厚度、可溶性固形物含量和种子千粒重)差异明显,其Shannon’s指数分别大于1.00和1.50。所有种质的平均遗传多样性指数为1.09,不同地区种质资源遗传多样性差异明显,多样性指数高低次序分别为:西北、华中、华东、华北、东北和华南。主座标标分析(PCO)将所有种质划分为3个区域,即厚皮种质优势区、厚皮和薄皮种质混合分布区、薄皮种质优势区,不同地区的种质在PCO图上的分布差异明显,西北地区的厚皮甜瓜种质和华中、华东地区的薄皮甜瓜种质广泛分布于3个区域中,其形态遗传多样性比其他地区的种质更加丰富,支持了新疆地区为厚皮甜瓜次级起源中心、黄淮及长江流域为薄皮甜瓜初级起源中心的观点。  相似文献   

2.
西瓜种质资源主要植物学性状的遗传多样性及相关性分析   总被引:7,自引:0,他引:7  
以我国西瓜、甜瓜种质资源中期库内1200份西瓜种质为材料,对果实重量、果肉颜色、中心糖、种子千粒重等12项主要植物学性状进行遗传多样性和相关性分析。多样性分析结果表明:我国西瓜资源12项植物学性状多样性指数平均值为1.70,种子千粒重多样性指数最大为2.37,果实形状多样性指数最小为1.02,其中果皮底色、果皮覆纹颜色、果肉颜色、果实重量、果实中心糖、种子千粒重性状数据分布较为分散。数量性状变异系数平均值为31.8,变异幅度均比其平均值大1~3倍。相关性分析结果表明:果实形状和果形指数、果肉颜色和果实中心糖、果肉颜色和种子千粒重、果皮厚度和硬度4对性状相关性极显著。种子千粒重和果实中心糖、果实重量和果皮厚度、果实重量和果皮硬度、覆纹颜色和形状4对性状相关性显著。  相似文献   

3.
西瓜种质资源主要植物学性状遗传多样性及相关性分析   总被引:1,自引:0,他引:1  
以我国西瓜甜瓜种质资源中期库内1200份西瓜(Citrullus Lanatus (Thunb) Matsum&Nakai)种质为材料,对果实重量、果肉颜色、中心糖、种子千粒重等12项主要植物学性状进行遗传多样性和相关性分析。多样性分析结果表明:12项性状多样性指数平均值为1.71,种子千粒重多样性指数最大为2.37,果实形状多样性指数最小为1.02,其中果皮底色、果皮覆纹颜色、果肉颜色、果实重量、中心糖、种子千粒重性状数据分布较为分散。数量性状变异系数平均值为31.8,变异幅度均大于其平均值1-3倍。各性状主要分布为:果实圆形、浅绿色果皮、深绿色网条形覆纹、红色果肉、种子表面粗糙、果实重量(3.0-6.0kg)、果形指数(0.9-1.0)、果皮厚度(1.0-1.1cm)、果皮硬度(30.0-34.0 kg/cm2)、中心糖度(9.0-10.0%)、种子千粒重(40.0-60.0g)。表明我国西瓜种质资源存在较为广泛的多样性。相关性分析结果表明:果实形状和果形指数、果肉颜色和中心糖、果肉颜色和种子千粒重、果皮厚度和果皮硬度4对性状相关性系数分别为0.700、0.488、-0.214、0.353,在r0.01=0.115水平下,相关性极显著。种子千粒重和中心糖、果实重量和果皮厚度、果实重量和果皮硬度、覆纹颜色和覆纹形状4对性状相关性系数分别为-0.109、0.114、0.104、0.108,在r0.05=0.097水平下,相关性显著。  相似文献   

4.
浙江省薄皮甜瓜地方品种的表型遗传多样性   总被引:2,自引:0,他引:2  
利用表型性状探讨了浙江省沿海地区27份薄皮甜瓜地方品种资源的遗传多样性。结果表明48个质量性状遗传多样性指数在0.17–1.98之间;33个数量性状的变异系数在4.56%–83.50%,表明其丰富的遗传多样性。形态学聚类分析表明,在相似系数0.30处可以将27个资源分成两大类,这与按生育期长短分类结果完全一致;亚类的划分与果实形状、种子形状、叶片颜色、果皮颜色、覆纹颜色等质量性状具有一定的相关性,但其划分依据相对独立。本研究结果进一步丰富了甜瓜的评价体系,并为今后优异基因资源的挖掘与利用提供重要依据。  相似文献   

5.
通过对255份怒江干热河谷杧果种质资源的24个形态性状进行评价,分析其遗传多样性。结果表明,怒江干热河谷杧果种质资源的果实单果重量、果实长度、果核重量、果核长度、果实形状、果皮颜色、果肉颜色、果实香气、果实风味、果实成熟期等形态性状均具有丰富的多样性。11个数量性状的变异系数为12.44%~56.44%,其中果实单果重量的变异系数最大,叶片宽度最小;13个质量性状的Shannon-weaver指数范围为0.68~2.21,平均值为1.42,其中果肉颜色指数最大,叶片质地指数最小。聚类结果将255份杧果材料聚为3大类,其中果皮厚,果小,种核大,可食率低,早熟,品味酸甜,品质差的杧果种质占很大比例。这些种质资源在不同地区收集的材料之间存在明显的遗传差异,但部分地区内的杧果材料表现出明显的遗传分化。通过表型评价鉴定,初步筛选出具有独特香气、反季节开花结果、早熟、小果型、高产等性状的特异种质资源35份。  相似文献   

6.
在相同的种植和管理条件下,对普通枇杷、栎叶枇杷、大瑶山枇杷和南亚枇杷等4个种210份种质资源的8个花序性状多样性进行鉴定,旨在为进一步的分类鉴定、利用研究提供参考依据。结果表明:(1)枇杷属种质资源的花序支轴姿态、花序支轴密度、花序支轴数、花序形状、花序长度、花序宽度、花瓣颜色、花冠直径Shannon-Weaver多样性指数1.352~2.951,存在丰富的多样性。(2)不同来源地的种质资源花序性状多样性水平差异较大,多样性指数最高的为云南(2.108),其次是贵州(1.962)、四川(1.953)、福建(1.900),美国的最低(1.137)。(3)云南、贵州的枇杷种质资源花序长度、宽度显著或极显著地大于其他地区;野生资源的花序长度、花序宽度和花冠直径均极显著地大于地方品种、选育品种。  相似文献   

7.
西瓜种质资源表型多样性及聚类分析   总被引:9,自引:0,他引:9  
采用变异系数、多样性指数和聚类分析等方法,对国内外783份西瓜种质资源24个表型性状进行了遗传多样性研究。结果表明:西瓜种质资源24个表型性状的平均变异系数为31.19%,其中种子覆纹颜色变异系数最大(70.90%),第一雌花节位最小(0.48%)。24个表型性状的平均遗传多样性指数为1.68,叶纵径(2.29)、叶横径(2.24)、果实皮厚(2.24)、果实横径(2.23)、果实生育期(2.19)、茎节间长度(2.09)、果实纵径(2.07)、种子百粒重(2.07)、单瓜种子数(2.04)多样性系数均较大,茎断面形状多样性指数最小(0.39)。基于24个表型性状,供试西瓜材料在欧氏距离为25时聚为2类:A类为普通西瓜种(Citrullus lanatus);B类为药西瓜(Citrullus colocynthis)。在欧氏距离为20时聚为3类:A1为Citrullus lanatus的普通西瓜亚种(sp.vulgaris),A2为Citrullus lanatus的毛西瓜亚种(sp.lanatus),B类为Citrullus colocynthis的淡味药西瓜亚种(sp.insipidus)。在欧氏距离为15时A11为sp.vulgaris的普通西瓜变种(var.vulgaris),A12为sp.vulgaris的籽瓜变种(var.megalaspermus),A2为sp.lanatus的开普西瓜变种(var.capensis)。西瓜种质资源表型性状的变异程度和多样性指数较高,具有丰富的变异程度和多样性。欧氏距离25可作为西瓜属内划分物种的遗传距离,20可作为划分西瓜亚种的遗传距离,15可作为西瓜变种划分的遗传距离。  相似文献   

8.
地方果蔗品种种质资源形态与农艺性状的多样性分析   总被引:1,自引:0,他引:1  
为开发利用地方果蔗(Saccharum officinarum)的种质资源, 对42 份地方果蔗种质资源18 个质量性状的遗传多样性进行研究, 并对其农艺性状进行了聚类分析。结果表明, 各质量性状的遗传多样性指数均较大, 以曝光后节间颜色(2.074)和芽形状(2.011)的最高, 其次是叶鞘毛群、芽位、曝光前节间颜色、节间形状, 多样性指数为1.428~1.6153;再次为叶姿、蜡粉带、内叶耳形状, 多样性指数为1.1918~1.2869, 最小的为茎形、脱叶性和外叶耳, 皆为0.3712。聚类分析可将42 份地方果蔗种质资源划分为高杆密生型、中径中高型、中大径高杆型、矮杆稀疏型4 类。这为果蔗品种选育提供了科学依据。  相似文献   

9.
基于2b-RAD简化基因组测序的甜瓜遗传多样性分析   总被引:1,自引:0,他引:1  
该研究利用2b-RAD(type IIB endonucleases restriction-site associated DNA)测序对28份厚皮甜瓜亲本材料的单核苷酸多态性(single nucleotide polymorphism,SNP)位点进行基因分型,分析其遗传多样性与亲缘关系,为甜瓜分子标记辅助育种提供科学依据。结果表明:(1)28份甜瓜种质SNPs数量有10318个,其发生转换与发生颠换的比值为2.15,两两种质间的遗传分化系数和遗传距离的平均值分别为0.88和2.22,说明这28份种质之间存在高度的遗传分化。(2)依据甜瓜的果皮颜色、果面网纹和果肉颜色3种性状,分别将以上28份种质分为4个群体(白皮群体、黄皮群体、青皮群体和绿皮群体)、3个群体(光皮群体、稀网群体和密网群体)以及3个群体(白肉群体、桔肉群体和绿肉群体)。(3)表型性状遗传分析结果显示,依据果皮颜色分类的各群体之间的遗传分化程度最高,其遗传分化系数在0.05~0.19之间,即均存在中度及以上程度的分化;光皮群体与密网群体之间存在中度遗传分化,但光皮群体与稀网群体之间以及稀网群体与密网群体之间均无显著分化;白肉群体与桔肉群体之间存在中度遗传分化,但白肉群体与绿肉群体之间以及桔肉群体与绿肉群体之间无明显分化。(4)分子系统进化树分析将28份甜瓜种质划分为三类,其中,第一类包含11份种质(主要为自主选育的纯合种质),第二类包含9份种质(大部分为从新疆引进或从新疆品种中选育出来的纯合种质),第三类包含8份种质(大部分为从日本引进或从日本品种中选育出来的纯合种质)。研究表明,依据甜瓜分子水平的聚类结果与地理来源具有一定关系,但其与育种者依据甜瓜的果皮颜色、果面网纹和果肉颜色对育种材料的分类结果不完全一致。  相似文献   

10.
基于表型性状的叶用莴苣资源多样性分析   总被引:3,自引:0,他引:3  
对从国内外引进的153份叶用莴苣种质资源的15个表型性状进行了系统鉴定,主要包括叶片性状、植株性状、抽薹开花时间等。结果表明:15个表型性状的平均变异系数为28.98%,其中叶缘变异系数最大(49.85%),开花期的最小(7.05%)。15个表型性状的平均遗传多样性指数为1.08,抽薹期(1.41)、叶形(1.56)、株高(1.39)的遗传多样性指数均较大,叶裂刻的遗传多样性指数最小(0.3)。通过SAS对这些材料进行聚类分析,将153份材料分为4组群,结果表明第l I和IV组群包含资源60和65份,其余组群包含材料较少。总体来讲叶用莴苣资源型性状的变异程度和遗传多样性指数较高,具有丰富的变异程度和多样性。  相似文献   

11.
Among Cucurbitaceae, Cucumis melo is one of the most important cultivated cucurbits. They are grown primarily for their fruit, which generally have a sweet aromatic flavor, with great diversity and size (50 g to 15 kg), flesh color (orange, green, white, and pink), rind color (green, yellow, white, orange, red, and gray), form (round, flat, and elongated), and dimension (4 to 200 cm). C. melo can be broken down into seven distinct types based on the previously discussed variations in the species. The melon fruits can be either climacteric or nonclimacteric, and as such, fruit can adhere to the stem or have an abscission layer where they will fall from the plant naturally at maturity. Traditional plant breeding of melons has been done for 100 years wherein plants were primarily developed as open-pollinated cultivars. More recently, in the past 30 years, melon improvement has been done by more traditional hybridization techniques. An improvement in germplasm is relatively slow and is limited by a restricted gene pool. Strong sexual incompatibility at the interspecific and intergeneric levels has restricted rapid development of new cultivars with high levels of disease resistance, insect resistance, flavor, and sweetness. In order to increase the rate and diversity of new traits in melon it would be advantageous to introduce new genes needed to enhance both melon productivity and melon fruit quality. This requires plant tissue and plant transformation techniques to introduce new or foreign genes into C. melo germplasm. In order to achieve a successful commercial application from biotechnology, a competent plant regeneration system of in vitro cultures for melon is required. More than 40 in vitro melon regeneration programs have been reported; however, regeneration of the various melon types has been highly variable and in some cases impossible. The reasons for this are still unknown, but this plays a heavy negative role on trying to use plant transformation technology to improve melon germplasm. In vitro manipulation of melon is difficult; genotypic responses to the culture method (i.e., organogenesis, somatic embryogenesis, etc.) as well as conditions for environmental and hormonal requirements for plant growth and regeneration continue to be poorly understood for developing simple in vitro procedures to culture and transform all C. melo genotypes. In many cases, this has to be done on an individual line basis. The present paper describes the various research findings related to successful approaches to plant regeneration and transgenic transformation of C. melo. It also describes potential improvement of melon to improve fruit quality characteristics and postharvest handling. Despite more than 140 transgenic melon field trials in the United States in 1996, there are still no commercial transgenic melon cultivars on the market. This may be a combination of technical or performance factors, intellectual property rights concerns, and, most likely, a lack of public acceptance. Regardless, the future for improvement of melon germplasm is bright when considering the knowledge base for both techniques and gene pools potentially useable for melon improvement.  相似文献   

12.
Gracilaria vermiculophylla (Ohmi) Papenf., an agar‐producing red alga introduced from northeast Asia to Europe and North America, is often highly abundant in invaded areas. To assay its genetic diversity and identify the putative source of invasive populations, we analyzed the mitochondrial cytochrome c oxidase subunit I (cox1) gene from 312 individuals of G. vermiculophylla collected in 37 native and 32 introduced locations. A total of 19 haplotypes were detected: 17 in northeast Asia and three in Europe and eastern and western North America, with only one shared among all regions. The shared haplotype was present in all introduced populations and in ~99% of individuals in the introduced areas. This haplotype was also found at three native locations in east Korea, west Japan, and eastern Russia. Both haplotype and nucleotide diversities were extremely low in Europe and North America compared to northeast Asia. Our study indicates that the East Sea/Sea of Japan is a likely donor region of the invasive populations of G. vermiculophylla in the east and west Atlantic and the east Pacific.  相似文献   

13.
The diversity of a region reflects both local diversity and the turnover of species (beta diversity) between areas. The angiosperm flora of eastern Asia (EAS) is roughly twice as rich as that of eastern North America (ENA), in spite of similar area and climate. Using province/state‐level angiosperm species floras, we calculated beta diversity as the slope of the relationship between the log of species similarity (S ) and either geographic distance or difference in climate. Distance‐based beta diversity was 2.6 times greater in the north–south direction in EAS than in ENA and 3.3 times greater in the east–west direction. When ln S was related to distance and climate difference in multiple regressions, both distance and climate PC1 were significant effects in the north–south direction, but only geographic distance had a significant, unique influence in the east–west direction. The general predominance of distance over environment in beta diversity suggests that history and geography have had a strong influence on the regional diversity of these temperate floras.  相似文献   

14.
Melon fruits: genetic diversity, physiology, and biotechnology features   总被引:1,自引:0,他引:1  
Among Cucurbitaceae, Cucumis melo is one of the most important cultivated cucurbits. They are grown primarily for their fruit, which generally have a sweet aromatic flavor, with great diversity and size (50 g to 15 kg), flesh color (orange, green, white, and pink), rind color (green, yellow, white, orange, red, and gray), form (round, flat, and elongated), and dimension (4 to 200 cm). C. melo can be broken down into seven distinct types based on the previously discussed variations in the species. The melon fruits can be either climacteric or nonclimacteric, and as such, fruit can adhere to the stem or have an abscission layer where they will fall from the plant naturally at maturity. Traditional plant breeding of melons has been done for 100 years wherein plants were primarily developed as open-pollinated cultivars. More recently, in the past 30 years, melon improvement has been done by more traditional hybridization techniques. An improvement in germplasm is relatively slow and is limited by a restricted gene pool. Strong sexual incompatibility at the interspecific and intergeneric levels has restricted rapid development of new cultivars with high levels of disease resistance, insect resistance, flavor, and sweetness. In order to increase the rate and diversity of new traits in melon it would be advantageous to introduce new genes needed to enhance both melon productivity and melon fruit quality. This requires plant tissue and plant transformation techniques to introduce new or foreign genes into C. melo germplasm. In order to achieve a successful commercial application from biotechnology, a competent plant regeneration system of in vitro cultures for melon is required. More than 40 in vitro melon regeneration programs have been reported; however, regeneration of the various melon types has been highly variable and in some cases impossible. The reasons for this are still unknown, but this plays a heavy negative role on trying to use plant transformation technology to improve melon germplasm. In vitro manipulation of melon is difficult; genotypic responses to the culture method (i.e., organogenesis, somatic embryogenesis, etc.) as well as conditions for environmental and hormonal requirements for plant growth and regeneration continue to be poorly understood for developing simple in vitro procedures to culture and transform all C. melo genotypes. In many cases, this has to be done on an individual line basis. The present paper describes the various research findings related to successful approaches to plant regeneration and transgenic transformation of C. melo. It also describes potential improvement of melon to improve fruit quality characteristics and postharvest handling. Despite more than 140 transgenic melon field trials in the United States in 1996, there are still no commercial transgenic melon cultivars on the market. This may be a combination of technical or performance factors, intellectual property rights concerns, and, most likely, a lack of public acceptance. Regardless, the future for improvement of melon germplasm is bright when considering the knowledge base for both techniques and gene pools potentially useable for melon improvement.  相似文献   

15.
16.
Morphometric variation in 26 characters of 245 skulls of the marbled polecat (Vormela peregusna) was studied across the distribution range. Morphological diversity was low with respect to both the size and the shape of the skull. The sexual size dimorphism of cranial characters in V. peregusna was low compared with other similar-sized mustelids. This finding may be a result of more specialized behaviour, resulting in less intra-specific competition with respect to habitat and food selection. Analysis of the geographic variation of skulls revealed two morphological groups – western and eastern. These groups were treated as distinct subspecies in this study. Nominotypical V. p. peregusna (Güldenstädt, 1770) (syn. sarmatica, euxina) is found in southern and eastern Europe, Asia Minor and Caucasus. The eastern subspecies V. p. koshewnikowi Satunin, 1910 (syn. alpherakii, chinensis, negans, obscura, ornata, pallidior, syriaca, and tedshenika) is found south and east of the Middle East, in Middle and Central Asia and eastward to China. Our data revealed a gradual decrease in the morphological diversity in Vormela skulls from west to east in the distribution range. This phenomenon may be explained by the later origin of the eastern subclusters of the marbled polecat. The pattern of geographic variation revealed in this study may reflect the Pleistocene history of the species range formation, rather than a relationship to climate conditions throughout the modern species range.  相似文献   

17.
中国李种质资源形态性状和农艺性状的遗传多样性分析   总被引:2,自引:0,他引:2  
以国家果树种质熊岳李杏圃中保存的405份中国李和杂种李为材料,依据32个主要形态性状和农艺性状的评价数据,对这些主要性状进行了遗传多样性、相关性和主成分分析.结果表明,中国李表现出丰富的遗传多样性;从字符型形态和农艺性状数据看,叶形、果形、果皮彩色和果肉色泽等性状均表现出较为丰富的多样性;从数值型形态和农艺性状数据看.各性状的变异系数为47.09%~14.85%;其中单果重的变异系数最大,为47.09%,其变幅为4.50~107.90g.其次是维生素C含量,变异系数为40.44%,变幅为0.80~14.70mg/100g;相关性分析得出,节间长度与一年生枝条长度和可溶性糖含量呈正相关,果实发育期与可溶性固形物和可溶性糖含量也呈正相关,而与可滴定酸和维生素C含量呈负相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号