首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lagenidium giganteum is an effective biological control agent for mosquitoes with limited use due to poor survival and contamination during storage. Invert (water-in-oil) emulsions using crop oils were investigated for formulating L. giganteum mycelium for improved shelf life and delivery. Cells formulated in a water-in-oil (W/O) emulsion were just as effective against larvae as those formulated in aqueous suspension. Cells formulated in the W/O emulsion and cell suspension settled during storage and formed clumps, which significantly reduced the efficacy of formulations. Hydrophobic silica nanoparticles were added to the W/O emulsion formulation for oil thickening. The addition of silica significantly reduced cell sedimentation and improved storage; thickened W/O emulsions with an initial cell density of 3900 CFU/mg applied at 0.5 mg/cm2 were greater than 95% effective at infecting mosquitoes after 12 weeks of storage at room temperature. Cell density reduction during storage was represented using first-order kinetics. Surface treatment of silica nanoparticles and oil refinement both had a significant effect on the first-order rate constant; as the hydrophobicity of the silica increased and level of oil refinement decreased, the rate constant increased. The percentage of water in the W/O emulsion and type of refined crop oil had no significant effect on the first-order rate constant. Cells formulated in the thickened W/O emulsion were less likely to settle when applied to water compared to cells in aqueous suspension, suggesting better cell distribution in an aqueous environment could be achieved when cells are applied in a W/O emulsion.  相似文献   

2.
Water-in-oil emulsions provide an alternative for long-term stabilization of microorganisms. Maintaining physical stability of the emulsion and cell viability is critical for large-scale application. Water-in-oil (W/O) emulsions were prepared with the biolarvacide Lagenidium giganteum and the green alga Chlorella vulgaris. Physical stability was measured via light scattering measurements of the internal phase droplets and cell viability was measured by plating and enumerating colony forming units. Emulsions were demonstrated to stabilize L. giganteum and C. vulgaris for more than 4 months without refrigeration. Introducing nutrients into the internal phase of W/O emulsions without cells had no significant effect on changes in aqueous phase droplet size dynamics. Internal phase droplet size changes that occurred over time were greater in the presence of cells. Increases in droplet size were correlated with cell death indicating measurement of internal phase droplet size changes may be an approach for monitoring declines in cell viability during storage.  相似文献   

3.
Co-enzyme Q10 (CoQ10), a lipophilic compound that widely used in the food and pharmaceutical products was formulated in a κ-carrageenan coated oil-in-water (O/W) emulsion. In this work, we examined the solubility of CoQ10 in different carrier oils and effects of emulsifier type on the formation and stability of CoQ10-loaded O/W emulsion. Nine vegetable oils and four types of emulsifiers were used. CoQ10 was found significantly (p?<?0.05) more soluble in medium chain oils (coconut oil and palm kernel oil) as compared to other vegetable oils. The O/W emulsions were then prepared with 10 % (w/w) coconut oil and palm kernel oil containing 200 g CoQ10/L oil stabilized by 1 % (w/v) emulsifiers (sucrose laurate (SEL), sodium stearoyl lactate (SSL), polyglycerol ester (PE), or Tween 80 (Tw 80)) in 1 % (w/v) κ-carrageenan aqueous solution. Particle size distribution and physical stability of the emulsions were monitored. The droplet sizes (surface weighted mean diameter, D[3,2]) of fresh O/W emulsion in the range of 2.79 to 5.83 μm were observed. Irrespective of the oil used, results indicated that complexes of SSL/κ-carrageenan provided the most stable CoQ10-loaded O/W emulsion with smaller and narrower particle size distribution. Both macroscopic and microscopic observations showed that O/W emulsion stabilized by SSL/κ-carrageenan is the only emulsion that exhibited no sign of coalescence, flocculation, and phase separation throughout the storage period observed.  相似文献   

4.
Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.  相似文献   

5.
The purpose of this research was to develop an emulsion formulation of indomethacin (IND) suitable for nasal delivery. IND was incorporated into the oil phases of oil in water (O/W) and water in oil (W/O) emulsions. For this purpose, different emulsifying agents (Tween 80, Span 80 and Brij 58) were used in two emulsion formulations. When the effects of several synthetic membranes (nylon, cellulose, cellulose nitrate) were compared with the sheep nasal mucosa, the cellulose membrane and sheep nasal mucosa showed similar permeation properties for O/W emulsion (P > 0.05). To examine the absorption characteristics of IND, the anti-inflammatory properties of intravenous solution of IND, intranasal O/W emulsions of IND (with or without enhancers) and intranasal solution of IND (IND-Sol) were investigated in rats with carrageenan-induced paw edema. When citric acid was added to the nasal emulsion, the anti-inflammatory activity was similar to that of intravenous solution (P > 0.05). Finally, it was concluded that, intranasal administration of IND emulsion with citric acid may be considered as an alternative to intravenous and per oral administrations of IND to overcome their adverse effects.  相似文献   

6.
In this work, a novel strategy for the controlled fabrication of biomolecular stimulus responsive water-in-oil-in-water (W/O/W) multiple emulsion using the membrane emulsification process was investigated. The emulsions interface was functionalized with a biomolecule able to function as a receptor for a target compound. The interaction between the biomolecular receptor and target stimulus activated the release of bioactive molecules contained within the structured emulsion. A glucose sensitive emulsion was investigated as a model study case. Concanavalin A (Con A) was used as the biomolecular glucose sensor. Various physicochemical strategies for stimulus responsive materials formulation are available in literature, but the preparation of biomolecule-responsive emulsions has been explored for the first time in this paper. The development of novel drug delivery systems requires advanced and highly precise techniques to obtain their particular properties and targeting requirements. The present study has proven the flexibility and suitability of membrane emulsification for the preparation of stable and functional multiple emulsions containing Con A as interfacial biomolecular receptor able to activate the release of a bioactive molecule as a consequence of interaction with the glucose target molecule. The influence of emulsion interfacial composition and membrane emulsification operating conditions on droplets stability and functional properties have been investigated. The release of the bioactive molecule as a function of glucose stimulus and its concentration has been demonstrated.  相似文献   

7.
This study describes the influence of environmental stresses on the stability of emulsions prepared by a natural sugar beet extract (Beta vulgaris L.). The emulsion stabilizing performance was compared to that of Quillaja extract, which is widely used within the food and beverage industry as natural surfactant. We investigated the influence of pH, ionic strength, heating and freeze-thawing on the mean particle size, ζ-potential and microstructure of oil-in-water emulsions (10% w/w oil, 0.75% w/w emulsifier). The emulsions stabilized by the anionic sugar beet extract were stable at pH 5–8 and against thermal treatments up to 60 °C. However, the prepared emulsions were unstable at acidic (pH 2–4) and basic pH conditions (pH 9), at high temperature (>60 °C), and at salt additions (> 0.1 M NaCl / CaCl2). Moreover, they also phase separated upon freeze-thawing. Our results show that sugar beet extract is capable of stabilizing emulsions and may therefore be suitable as natural emulsifier for selected applications in the food and beverage industry.  相似文献   

8.
Treating carrot (Daucus carota L.) discs with ice-cold NaCl solutions for 30 minutes caused three effects that appear to be functionally related: the exchange of tissue Ca2+ and Mg2+ for Na+, the release of protein, and the suppression of active uptake of glucose and orthophosphate. Cyclosis continued apparently unabated after treatment with NaCl at concentrations of up to 0.25 m, so the cells remained viable and energetically competent. The correlation between the release of Ca2+ and Mg2+ and release of protein, and between these effects and the suppression of glucose and orthophosphate uptake, supports the hypothesis that divalent cations maintain, and monovalent cations disrupt, linkages between the outer cell surface and proteins required for active solute uptake. Calcium preserved uptake activity only when it was added in time to prevent the release of protein. Cells gradually recovered some glucose uptake activity after it had been completely inactivated by treatment with 0.25 m NaCl. This recovery occurred in the absence of added Ca2+. It was inhibited by puromycin and so appears to require some protein synthesis. Beet (Beta vulgaris L.) discs were more resistant than carrot discs to treatment with NaCl solutions, thus reflecting the difference in tolerance of the two species to sodicity.  相似文献   

9.
This study was conducted to develop formulations of hydrocortisone butyrate (HB)-loaded poly(d,l-lactic-co-glycolic acid) nanoparticles (PLGA NP) suspended in thermosensitive gel to improve ocular bioavailability of HB for the treatment of bacterial corneal keratitis. PLGA NP with different surfactants such as polyvinyl alcohol (PVA), pluronic F-108, and chitosan were prepared using oil-in-water (O/W) emulsion evaporation technique. NP were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential, and crystallinity. In vitro release of HB from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when nanoparticles were suspended in thermosensitive gels and zero-order release kinetics was observed. In HCEC cell line, chitosan-emulsified NP showed the highest cellular uptake efficiency over PVA- and pluronic-emulsified NP (59.09?±?6.21%, 55.74?±?6.26%, and 62.54?±?3.30%, respectively) after 4 h. However, chitosan-emulsified NP indicated significant cytotoxicity of 200 and 500 μg/mL after 48 h, while PVA- and pluronic-emulsified NP exhibited no significant cytotoxicity. PLGA NP dispersed in thermosensitive gels can be considered as a promising drug delivery system for the treatment of anterior eye diseases.  相似文献   

10.
Herein, we report the successful development of a novel nanosystem capable of an efficient delivery and temperature-triggered drug release specifically aimed at cancer. The water-soluble 130.1 ± 0.2 nm iron oxide nanoparticles (IONPs) were obtained via synthesis of a monodispersed iron oxide core stabilized with tetramethylammonium hydroxide pentahydrate (TMAOH), followed by coating with the thermoresponsive copolymer poly-(NIPAM-stat-AAm)-block-PEI (PNAP). The PNAP layer on the surface of the IONP undergoes reversible temperature-dependent structural changes from a swollen to a collapsed state resulting in the controlled release of anticancer drugs loaded in the delivery vehicle. We demonstrated that the phase transition temperature of the prepared copolymer can be precisely tuned to the desired value in the range of 36°C–44°C by changing the monomers ratio during the preparation of the nanoparticles. Evidence of modification of the IONPs with the thermoresponsive copolymer is proven by ATR-FTIR and a quantitative analysis of the polymeric and iron oxide content obtained by thermogravimetric analysis. When loaded with doxorubicin (DOX), the IONPs-PNAP revealed a triggered drug release at a temperature that is a few degrees higher than the phase transition temperature of a copolymer. Furthermore, an in vitro study demonstrated an efficient internalization of the nanoparticles into the cancer cells and showed that the drug-free IONPs-PNAP were nontoxic toward the cells. In contrast, sufficient therapeutic effect was observed for the DOX-loaded nanosystem as a function of temperature. Thus, the developed temperature-tunable IONPs-based delivery system showed high potential for remotely triggered drug delivery and the eradication of cancer cells.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0131-x) contains supplementary material, which is available to authorized users.KEY WORDS: drug delivery, IONPs, remote-triggered drug release, thermoresponsive copolymer, tunable LCST  相似文献   

11.
This study sought to encapsulate a high concentration of L-ascorbic acid, up to 30% (w/v), in the inner aqueous phase of water-in-oil-water (W/O/W) emulsions with soybean oil as the oil phase. Two-step homogenization was conducted to prepare W/O/W emulsions stabilized by a hydrophobic emulsifier and 30% (v/v) of W/O droplets stabilized by a hydrophilic emulsifier. First-step homogenization prepared W/O emulsions with an average aqueous droplet diameter of 2.0 to 3.0 μm. Second-step homogenization prepared W/O/W emulsions with an average W/O droplet diameter of 14 to 18 μm and coefficients of variation (CVs) of 18% to 25%. The results indicated that stable W/O/W emulsions containing a high concentration of L-ascorbic acid were obtained by adding gelatin and magnesium sulfate in the inner aqueous phase and glucose in both aqueous phases. L-Ascorbic acid retention in the W/O/W emulsions was 40% on day 30 and followed first-order kinetics.  相似文献   

12.
改善蛋白质药物PELA控释微球释放性能的研究   总被引:5,自引:0,他引:5  
开展了以乙酸乙酯(EA)与二氯甲烷(MC)的混合溶液为有机溶剂、以单甲氧基聚乙二醇-聚-DL-乳酸(PELA)为膜材的W/O/W复乳-分步固化法制备蛋白质药物控释微球的研究。为解决微球突释率高、且突释后的释药速度缓慢的问题,实现后期快速释放,以溶菌酶为模型蛋白,重点考察了膜材组成、内水相体积以及外水相盐浓度对微球释药速率的影响。结果表明,当外水相盐浓度增大至1.5%时可将释放率由22%提升至45%,是一种较好的加快微球释药速率的途径,因此可通过选择适当的外水相盐浓度,达到所期望的药物释药速率。  相似文献   

13.
K W Miller  D M Small 《Biochemistry》1983,22(2):443-451
The organization of lipids within emulsions composed of triolein (TO), cholesteryl oleate (CO), cholesterol (C), and egg yolk phosphatidylcholine (L) was examined. CO was substituted for TO in a series of emulsions to obtain TO:CO ratios comparable to the triglyceride:cholesterol ester ratios observed in subfractions of triglyceride-rich lipoproteins. The weight fraction of TO in the surface phase (0.02-0.05) was independent of the TO content of the emulsions. However, the weight fraction of CO in the surface phase depended upon the percentage of CO in the emulsions and was less than 0.004 even when 13.7% CO was present in the emulsion. When CO was substituted for TO, the percent of the total particle C which was carried in the droplet oil phase was increased. The interparticle equilibration of lipids was studied in subfractions of sonicated emulsions with particle sizes comparable to triglyceride-rich lipoproteins. The TO:CO ratios of the subfractions of a given emulsion were constant and independent of size, but the C:L ratio decreased in particles of smaller diameter. However, the surface C:L ratio was the same in all particles from a given emulsion. The size dependence of the C:L ratios was attributed to the partitioning of C into the oil cores of the emulsions. Because large droplets have the greatest core:surface mass ratios, more of their total particle C is carried in the core.  相似文献   

14.
The effects of carnauba wax addition on the physical state of palm kernel oil-in-water emulsions were investigated. The oil-in-water emulsion (40 wt% oil + 60 wt% aqueous phase) kept the liquid state at 25°C irrespective of the presence or absence of carnauba wax in the oil phase. The emulsion containing the wax transformed from the liquid state to the solid state by shearing after storage for 20 h at 4°C, although the liquid-solid transition was not observed for the emulsion not containing the wax upon the same treatment. The viscoelasticity of the solid emulsions was demonstrated by small-deformation mechanical testing. Analysis of flow behavior of the emulsions showed that the change in physical properties of the emulsion containing the wax at 4°C was caused by the shearing at a low shear rate, around 50 s?1–100 s?1. According to the transition from the liquid state to the solid state of the emulsion containing the wax, the aggregation of oil droplets was found to occur to a large extent. The results of differential scanning calorimetry and surface pressure–surface area isotherms suggested that triglyceride molecules of palm kernel oil were more oriented at the oil–water interfaces in the emulsions after the wax addition. Based on these results, it is thought that carnauba wax is important in destabilization of palm kernel oil-in-water emulsions by modifying the physical state of the oil triglyceride molecules at the interfaces.  相似文献   

15.
The purpose of this study was to prepare monodisperse gelatin microcapsules containing an active agent using microchannel (MC) emulsification, a novel technique for preparing water-in-oil (W/O) and oil-in-water (O/W) emulsions. As the first step in applying MC emulsification to the preparation of monodisperse gelatin microcapsules, simple gelatin microbeads were prepared using this technique. A W/O emulsion with a narrow size distribution containing gelatin in the aqueous phase was created as follows. First, the aqueous disperse phase was fed into the continuous phase through the MCs at 40°C (operating pressure: 3.9 kPa). The emulsion droplets had an average particle diameter of 40.7 μm and a relative standard deviation of 5.1%. The temperature of the collected emulsion was reduced and maintained at 25°C overnight. The gelatin microbeads had a smooth surface after overnight gelation; the average particle diameter was calculated to be 31.6 μm, and the relative standard deviation, 7.3%. The temperature was then lowered to 5°C by rapid air cooling and finally dried. The gelatin beads were dried and could be resuspended well in iso-octane. The had an average particle diameter of 15.6 μm, and a relative standard deviation of 5.9%. Using MC emulsification, we were able to prepare gelatin microbeads with a narrow size distribution. Since this emulsification technique requires only a low-energy input, it may create desirable experimental conditions for microencapsulation of unstable substances such as peptides and proteins. This method is promising for making monodisperse microbeads.  相似文献   

16.
Natural emulsifiers, particularly those extracted from plants, are highly wanted by food industry to meet consumers demand for clean label food and beverage products. The potential utilization of soy lecithin as an emulsifier in model coffee creamer was investigated in this study. The model oil-in-water (O/W) emulsions consisted of 10 wt% medium chain triglyceride were stabilized using either 1% or 5% soy lecithin (pH 7.0). The O/W emulsions were of whitish milky color (L*?=?88–92) and were able to whiten black coffee solutions (L* from 5.5 for black coffee to 44–56 for white coffees). Model O/W emulsions with smaller mean droplet diameters (0.11 to 1.09 μm), higher surface potentials (ζ?=??62 to ?72 mV), and better stabilities in hot coffee were fabricated using higher lecithin levels because there was more emulsifier to coat the oil droplet surfaces. Alteration of the electrostatic interactions in the model O/W emulsions (5% lecithin) by pH adjustment or calcium addition led to droplet aggregation under certain conditions, which was attributed to charge reduction by protonation of lecithin head groups and electrostatic screening by counter-ion accumulation and ion-binding. In particular, phase separation of the model creamer occurred at pH value around 4.5 when the system was acidified at a slow rate. Overall, this study suggests that lecithin-stabilized O/W emulsions may become unstable in coffee solutions with high acidity or calcium levels. The information obtained from this study provides insights on the use of plant-based emulsifiers in commercial food and beverage systems.  相似文献   

17.
18.
Development of efficient molecular medicines, including gene therapeutics, RNA therapeutics, and DNA vaccines, depends on efficient means of transfer of DNA or RNA into the cell. Potential problems, including toxicity and immunogenicity, surrounding viral methods of DNA delivery have necessitated the use of nonviral, synthetic carriers. To better design synthetic carriers, or transfection reagents, the modular design of viruses has inspired a modular approach to DNA and RNA delivery. Each modular component can be designed to circumvent each of the many barriers. The modular approach will allow modification of individual components for a specific application. By utilizing a dense silica nanoparticle to form a ternary complex, transfection efficiency of a DNA-transfection reagent complex was increased by a factor of approximately 10 by concentrating the DNA at the surface of cells. Surface modification of the silica nanoparticles allowed determination of the cellular uptake mechanism with only minor alteration of transfection efficiency. Nanoparticles are internalized by an endosome-lysosomal route followed by perinuclear accumulation. The modification mechanism confirms that surface modification of the modular system can allow specific moieties to be incorporated into the modular system without significant alteration of the transfection efficiency. By showing that the modular system based upon concentration of DNA at the level of the cell can be used to increase transfection efficiency, we have shown that further modification of the system may better target DNA delivery and overcome other barriers of DNA expression.  相似文献   

19.
We present a facile method to prepare nanostructured lipid particles stabilized by carbon nanotubes (CNTs). Single-walled (pristine) and multi-walled (functionalized) CNTs are used as stabilizers to produce Pickering type oil-in-water (O/W) emulsions. Lipids namely, Dimodan U and Phytantriol are used as emulsifiers, which in excess water self-assemble into the bicontinuous cubic Pn3m phase. This highly viscous phase is fragmented into smaller particles using a probe ultrasonicator in presence of conventional surfactant stabilizers or CNTs as done here. Initially, the CNTs (powder form) are dispersed in water followed by further ultrasonication with the molten lipid to form the final emulsion. During this process the CNTs get coated with lipid molecules, which in turn are presumed to surround the lipid droplets to form a particulate emulsion that is stable for months. The average size of CNT-stabilized nanostructured lipid particles is in the submicron range, which compares well with the particles stabilized using conventional surfactants. Small angle X-ray scattering data confirms the retention of the original Pn3m cubic phase in the CNT-stabilized lipid dispersions as compared to the pure lipid phase (bulk state). Blue shift and lowering of the intensities in characteristic G and G'' bands of CNTs observed in Raman spectroscopy characterize the interaction between CNT surface and lipid molecules. These results suggest that the interactions between the CNTs and lipids are responsible for their mutual stabilization in aqueous solutions. As the concentrations of CNTs employed for stabilization are very low and lipid molecules are able to functionalize the CNTs, the toxicity of CNTs is expected to be insignificant while their biocompatibility is greatly enhanced. Hence the present approach finds a great potential in various biomedical applications, for instance, for developing hybrid nanocarrier systems for the delivery of multiple functional molecules as in combination therapy or polytherapy.  相似文献   

20.
Proteins originating from dry legumes are not that much used in food formulations, yet, they are interesting components from a sustainability point of view, and could have interesting functional properties, e.g. for emulsion preparation. Therefore, this work focuses on the potential of the water soluble part of pea, chickpea and lentil protein isolates under acidic emulsions (pH 3.0) using a novel mild technique: premix membrane emulsification. Pea proteins (PP) and chickpea proteins (CP) lower the interfacial tension in the same way as whey protein isolate (WPI), which suggests that they could facilitate emulsion droplet formation similarly as WPI, while lentil proteins (LP) are slightly less effective. It is possible to make oil-in-water (O/W) emulsions with an average droplet diameter (d 4,3 ) of ~5 μm after 5 cycles in the premix system. The droplet size distribution of the emulsions remained constant during one day of storage, indicating that legume proteins are able to form and kinetically stabilize O/W emulsions. CP and PP exhibited emulsifying properties comparable to those of WPI, whereas LP is slightly less efficient, therewith indicating the great potential and that pea and chickpea protein isolates hold as emulsifiers in acidic food formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号