首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
This work is focused on physicochemical and emulsifying properties of pea (PP), chickpea (CP) and lentil (LP) proteins. We evaluated the molecular weight distributions, surface net charge, free sulfhydryl group (SH) and disulfide bond (SS) contents, protein solubility and thermal stability of the protein isolates. Their emulsifying properties (droplet size distribution, flocculation, coalescence and creaming) were also determined as function of pH values. The three protein isolates exhibit similar physicochemical properties, including good solubility and high thermal stability despite a high degree of denaturation. In addition, we analysed the influence of pH on stability of oil-in-water (O/W; 10 wt%/90 wt%) emulsions stabilized by the legume protein isolates. Concerning emulsifying ability and stability, the most unfavourable results for all three protein isolates relate to their isoelectric point (pI?=?4.5). A significant improvement in emulsion stability takes place as the pH value departs from the pI. Overall, this study indicates that pea, chickpea and lentil proteins have great potential as food emulsifiers.  相似文献   

2.
Many sectors of the food industry are interested in replacing synthetic or animal-based ingredients with plant-based alternatives to create products that are more natural, environmentally friendly, and sustainable. In this study, the ability of several plant protein concentrates to act as natural emulsifiers in oil-in-water emulsions fortified with omega-3 fatty acids was investigated. The impact of emulsifier type on the formation and stability of the emulsions was determined by measuring changes in droplet characteristics (size and charge) under different homogenization, pH, salt, and temperature conditions. Pea (Pisum sativum), lentil (Lens culinaris) and faba bean (Vicia faba) protein concentrates all proved to be effective emulsifiers for forming and stabilizing 10 wt% algae oil-in-water emulsions produced by high-pressure homogenization. The droplet size decreased with increasing emulsifier concentration, and relatively small oil droplets (d < 0.3 μm) could be formed at higher emulsifier levels (5% protein). Lentil protein-coated droplets were the most stable to environmental stresses such as pH, ionic strength and temperature changes. These results have important implications for the production of functional foods and beverages from natural plant-based ingredients.  相似文献   

3.
The enzymatic cross-linking of adsorbed biopolymer nanoparticles formed between whey protein isolate (WPI) and sugar beet pectin using the complex coacervation method was investigated. A sequential electrostatic depositioning process was used to prepare emulsions containing oil droplets stabilized by WPI – nanoparticle – membranes. Firstly, a finely dispersed primary emulsion (10 % w/w miglyol oil, 1 % w/w WPI, 10 mM acetate buffer at pH 4) was produced using a high-pressure homogenizer. Secondly, a series of biopolymer particles were formed by mixing WPI (0.5 % w/w) and pectin (0.25 % w/w) solutions with subsequent heating above the thermal denaturation temperature (85 °C, 20 min) to prepare dispersions containing particles in the submicron range. Thirdly, nanoparticle-covered emulsions were formed by diluting the primary emulsion into coacervate solutions (0–0.675 % w/w) to coat the droplets. Oil droplets of stable emulsions with different interfacial membrane compositions were subjected to enzymatic cross-linking. We used cross-linked multilayered emulsions as a comparison. The pH stability of primary emulsions, biopolymer complexes and nanoparticle-coated base emulsions, as well as multilayered emulsions, was determined before and after enzyme addition. Freeze-thaw stability (?9 °C for 22 h, 25 °C for 2 h) of nanoparticle-coated emulsions was not affected by laccase. Results indicated that cross-linking occurred exclusively in the multilamellar layers and not between adsorbed biopolymer nanoparticles. Results suggest that the accessibility of distinct structures may play a key role for biopolymer-cross-linking enzymes.  相似文献   

4.
The polyphagous larvae of click beetles (Coleoptera: Elateridae) are major pests of spring wheat in Montana, USA. Presently available insecticides are unable to provide control over wireworm populations, and the use of natural enemies has not been successful under field conditions. In this study, we examined the effect of seven trap crops: pea, lentil, canola, corn, durum, barley, and wheat, for their attractiveness to wireworms compared to spring wheat. Experimental plots were located in two commercial grain fields in Valier and Ledger, Montana, USA and the trials took place from May to August in 2015 and 2016. Wheat plants damaged by wireworms were recorded and their relative locations in wheat rows and adjacent trap crop rows within a plot were determined using destructive soil samples. In 2016, variable row spacing (0.25, 0.5, 0.75, and 1 m) between the trap crops (pea and lentil) and wheat was assessed. Shade house bioassays were conducted using potted pea, lentil, and wheat plants to support field trial results. Limonius californicus larvae, released at the center of each pot were sampled 4 and 10 days after sowing. Wheat intercropped with pea and lentil had significantly fewer damaged wheat plants. Wireworm numbers were lower in wheat intercropped with pea compared to the control for both locations and years. Shade house results corresponded with field results, with more wireworms collected from pea and lentil than wheat. In the spacing trials, wheat plant counts were also significantly higher when paired with pea and lentil, particularly at 0.5 m spacing. Regardless of inter-row spacing, significantly fewer wireworms were associated with wheat when intercropped with pea and lentil trap crops.  相似文献   

5.
The transferability of genome-specific sequence tagged microsatellite site (STMS) primers from field pea (P. sativum) and chickpea (C. arietinum) to other major pulses was examined. Overall, field pea STMS primers amplified products in most of the accessions in comparison to that of the chickpea STMS primers, which amplified products in relatively few accessions. The highest level of successful amplifications with a single primer was 89% for field pea and 33% for chickpea primers respectively. The potential transferability of the STMS primers among species, expressed as the total mean percentage of positive amplifications, was 53% for the field pea STMS primers and 9% for the chickpea STMS primers. The individual mean percentage of successful transferability of field pea STMS primers across lentil, vetch and chickpea/Cicer sp. accessions was 60%, 39% and 62%, respectively. Whereas, for the chickpea STMS primers successful transferability was 5%, 3% and 18% for lentil, vetch and field pea, respectively. The trnasferability of these STMS primers indicates a high level of sequence conservation in these regions across species. Together with their locus-specificity, co-dominant nature and potential to amplify multiple alleles, their transferability makes STMS markers a powerful tool for genetic mapping, diversity analysis and genotyping.  相似文献   

6.
Brazil is the world’s largest producer country of eucalyptus. Although widely applied in the charcoal industry, no studies have focused on the microorganisms associated with Eucalyptus microcorys. Here, we evaluated the composition and structure of endophytic fungal communities in leaves of E. microcorys through two isolation techniques. A total of 120 fresh leaves were collected in a year-long survey at an eucalyptus plantation in the State of São Paulo (Brazil). Endophytic fungi were isolated by particle filtration (PF) and direct leaf fragment plating (LP) in two media: modified dicloran and synthetic nutrient agar, both supplemented with rose bengal and chloramphenicol. The isolates were grouped into morphospecies and identified by morphology and DNA sequencing. We recovered a total of 709 isolates, representing 59 taxa. All taxa found are reported as endophytic for the first time for E. microcorys. Castanediella eucalypticola and Neophaeomoniella eucalypti are new occurrences reported for Brazil. The LP technique recovered a higher number of taxa and isolates than the PF. However, the PF technique retrieved a higher species/isolate ratio than the LP method, 0.12 and 0.09, respectively. Fungal diversity assessed by diversity metrics did not significantly differ between isolation methods. Both techniques recovered a high number of unique taxa, demonstrating that neither method would individually represent the species richness from E. microcorys. The use of LP and PF provided a greater number of observed taxa and consequently new occurrence of species for Brazil.  相似文献   

7.
Recombined cream (RC, 23 % fat w/w) and standardised commercial cream (CC, 28 % fat w/w) were studied to understand the effects of manipulating fat globule size at the micron-/nano-scale on the stability and rheological properties of cream. All samples were adjusted to a fat: protein ratio of 5:1 and a fat: emulsifier (Tween 80) ratio of 30:1 to stabilize emulsion. For both CC and RC, different emulsions with droplet sizes covering micron- (3.9 μm), sub-micron (0.5 – 0.6 μm) and nano-metric scales (0.13 – 0.29 μm) were obtained using either the homogeniser (7/3 MPa) or the microfluidiser (85 MPa and 42 MPa). Fat globules from both RC and CC had high zeta potential values (-28 to -43 mV) and maintained their reduced size after 1 month of storage at 4 °C, providing evidence of emulsion stability. Droplet size had a significant effect on rheological characteristics of all creams produced. Nano-sized RC tended to have a rigid structure (solid/gel-like form) as compared to micron-sized RC (liquid-like form) as reflected by higher phase angle. Surprisingly, the rheological properties of CC exhibited an opposite tendency to that of RC. This implies that the observed rheological properties of CC and RC could not be fully explained by the discrepancy in droplet size. Differences in interfacial properties between RC and CC might also play a role in the rheological behaviour of the creams. Results indicated the stable high milk fat emulsions could be successfully created by reducing the globule size. These findings would be useful in understanding how micron-/nano-sized emulsions can be utilised in further application or processing of creams.  相似文献   

8.
The emulsifying characteristics of pectins isolated from six different okra genotypes were investigated and their structure-function relationships have been evaluated. Emulsion formation and stabilization of acidic oil-in-water emulsions (pH 2.0, φ?=?0.1) were studied by means of droplet size distribution, ζ-potential measurements, viscometry, interfacial composition analysis and fluorescence microscopy. Fresh and aged emulsions differed in terms of droplet size distribution, interfacial protein and pectin concentrations (Γ) depending on the molecular properties of pectin that was used. Specifically, pectins with intermediate length of RG-I branching with molar ratio of (Ara?+?Gal)/Rha between 2 and 3 exhibit the optimum emulsification capacity whereas samples with the molar ratio outside this range do not favour emulsification. Additionally, low amounts of RG-I segments (HG/RG-I?>?2) improve long term stability of emulsions as opposed to the samples that contain high amounts of RG-I (HG/RG-I?<?2) which lead to long term instability. Protein was not found to be the controlling factor for the stability of the dispersions. The present results show that rational design of pectin should be sought before application as functional ingredient in food and/or pharmaceutical systems.  相似文献   

9.
Stability of oil-in-water emulsions during freezing and thawing is regulated by the phase transitions occurring in the continuous and dispersed phases upon thermal treatments and by the composition of the interfacial membrane. In the present study, the impact of the water phase formulation (0–2.5–5–10–20–30–40% w/w sucrose), the interfacial composition [whey protein isolates (WPI) or sodium caseinate (NaCas) used at different concentrations], and the particle size on the stability of hydrogenated palm kernel oil (30% w/w)-in-water systems was investigated. Phase/state behaviour of the continuous and dispersed phases and emulsion destabilisation were studied by differential scanning calorimetry. System morphology was observed by particle size analysis and optical microscopy. The presence of sucrose in the aqueous phase and reduced particle size distribution significantly improved emulsion stability. WPI showed better stabilising properties than NaCas at lipid to protein ratios of 10:1, 7.5:1, 5:1 and 4:1. Increased WPI concentration significantly improved emulsion resistance to breakdown during freeze–thaw cycling. NaCas showed poor stabilising properties and was ineffective in reducing emulsion destabilisation at 0% sucrose at all the lipid to protein ratios.  相似文献   

10.
The plant seed is a leading platform amongst plant-based storage systems for the production of recombinant proteins. In this study, we compared the activity of human adenosine deaminase (hADA) expressed in transgenic seeds of three different plant species: pea (Pisum sativum L.), Nicotiana benthamiana L. and tarwi (Lupinus mutabilis Sweet). All three species were transformed with the same expression vector containing the hADA gene driven by the seed-specific promoter LegA2 with an apoplast targeting pinII signal peptide. During the study, several independent transgenic lines were generated and screened from each plant species and only lines with a single copy of the gene of interest were used for hADA expression analysis. A stable transgenic canola line expressing the ADA protein, under the control of 35S constitutive promoter was used as both as a positive control and for comparative study with the seed specific promoter. Significant differences were detected in the expression of hADA. The highest activity of the hADA enzyme (Units/g seed) was reported in tarwi (4.26 U/g) followed by pea (3.23 U/g) and Nicotiana benthamiana (1.69 U/g). The expression of mouse ADA in canola was very low in both seed and leaf tissue compared to other host plants, confirming higher activity of seed specific promoter. Altogether, these results suggest that tarwi could be an excellent candidate for the production of valuable recombinant proteins.  相似文献   

11.
12.
This study describes the influence of environmental stresses on the stability of emulsions prepared by a natural sugar beet extract (Beta vulgaris L.). The emulsion stabilizing performance was compared to that of Quillaja extract, which is widely used within the food and beverage industry as natural surfactant. We investigated the influence of pH, ionic strength, heating and freeze-thawing on the mean particle size, ζ-potential and microstructure of oil-in-water emulsions (10% w/w oil, 0.75% w/w emulsifier). The emulsions stabilized by the anionic sugar beet extract were stable at pH 5–8 and against thermal treatments up to 60 °C. However, the prepared emulsions were unstable at acidic (pH 2–4) and basic pH conditions (pH 9), at high temperature (>60 °C), and at salt additions (> 0.1 M NaCl / CaCl2). Moreover, they also phase separated upon freeze-thawing. Our results show that sugar beet extract is capable of stabilizing emulsions and may therefore be suitable as natural emulsifier for selected applications in the food and beverage industry.  相似文献   

13.
Peever TL  Barve MP  Stone LJ 《Mycologia》2007,99(1):59-77
Evolutionary relationships were inferred among a worldwide sample of Ascochyta fungi from wild and cultivated legume hosts based on phylogenetic analyses of DNA sequences from the ribosomal internal transcribed spacer regions (ITS), as well as portions of three protein-coding genes: glyceraldehyde-3-phosphate-dehydrogenase (G3PD), translation elongation factor 1-alpha (EF) and chitin synthase 1 (CHS). All legume-associated Ascochyta species had nearly identical ITS sequences and clustered with other Ascochyta, Phoma and Didymella species from legume and nonlegume hosts. Ascochyta pinodes (teleomorph: Mycosphaerella pinodes [Berk. & Blox.] Vestergen) clustered with Didymella species and not with well characterized Mycosphaerella species from other hosts and we propose that the name Didymella pinodes (Berk. & Blox.) Petrak (anamorph: Ascochyta pinodes L.K. Jones) be used to describe this fungus. Analysis of G3PD revealed two major clades among legume-associated Ascochyta fungi with members of both clades infecting pea ("Ascochyta complex"). Analysis of the combined CHS, EF and G3PD datasets revealed that isolates from cultivated pea (P. sativum), lentil (Lens culinaris), faba bean (Vicia faba) and chickpea (Cicer arietinum) from diverse geographic locations each had identical or similar sequences at all loci. Isolates from these hosts clustered in well supported clades specific for each host, suggesting a co-evolutionary history between pathogen and cultivated host. A. pisi, A. lentis, A. fabae and A. rabiei represent phylogenetic species infecting pea, lentil, faba bean and chickpea, respectively. Ascochyta spp. from wild relatives of pea and chickpea clustered with isolates from related cultivated hosts. Isolates sampled from big-flower vetch (Vicia grandiflora) were polyphyletic suggesting that either this host is colonized by phylogenetically distinct lineages of Ascochyta or that the hosts are polyphyletic and infected by distinct evolutionary lineages of the pathogen. Phylogenetic species identified among legume-associated Ascochyta spp. were fully concordant with previously described morphological and biological species.  相似文献   

14.
Summary The value of iron pyrites as a source of S for legumes (chickpea, pea and lentil) was studied on the Typic Ustochrepts of Pura in 1982–1983. It provided sufficient sulphur to increase their S uptake and concentration and increased their yield of seed and straw. Dry matter production per unit of S absorbed increased in the order: lentil<chickpea <pea.  相似文献   

15.
This study was performed to examine the effect of emulsifiers used to coat emulsion droplets containing β-carotene on the behavior of lipid digestion and bioaccessibility. Different emulsifiers (whey protein isolate, soy protein isolate, sodium caseinate, Tween 20, and soy lecithin) were used to prepare emulsions with similar sized droplets (200–400 nm). Protein-stabilized emulsions showed a similar behavior of digestion, and morphological change in the simulated gastrointestinal conditions. Soy lecithin-stabilized emulsions showed the lowest rate and extent of lipid digestion probably due to the low emulsifying capability of soy lecithin, showing coalesced droplets occurring after exposure to the gastric phase. Tween 20-stabilized emulsions had a lower rate and extent of lipid digestion than that of protein-stabilized emulsions, even though Tween 20-stabilized emulsions had a more stable structure to resistant to aggregation in gastric phase. Even though the difference in the digestion rate and extent, β-carotene bioaccessibility was not significantly different among emulsions stabilized by different emulsifiers at p?<?0.05.  相似文献   

16.
Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.  相似文献   

17.
The formation, stability and in vitro digestion of milk fat globule membrane (MFGM) proteins stabilized emulsions with 0.2 wt% β-carotene were investigated. The average particle size of β-carotene emulsions stabilized with various MFGM proteins levels (1%, 2%, 3%, 4%, 5% wt%) decreased with the increase of MFGM proteins levels. When MFGM proteins concentration in emulsions is above 2%, the average particle size of β-carotene emulsions is below 1.0 μm. A quite stable emulsion was formed at pH 6.0 and 7.0, but particle size increased with decrease in acidity of the β-carotene emulsion. β-carotene emulsions stabilized with MFGM proteins were stable with a certain salt concentrations (0–500 mMNaCl). β-carotene emulsions were quite stable to aggregation of the particles at elevated temperature and time (85 °C for 90 min). At the same time, β-carotene emulsions were stable against degradation under heat treatment conditions. In vitro digestion of β-carotene emulsion showed the mean particle size of β-carotene emulsions stabilized with MFGM proteins in the simulated stomach conditions and intestinal conditions is larger than that of initial emulsions and simulated mouth conditions. Confocal laser scanning microscopy of β-carotene MFGM proteins emulsions also showed the corresponding results to different vitro digestion model. There was a rapid release of free fatty acid (FFA) during the first 10 min and after this period, an almost constant 70% digestion extent was reached. Approximately 80% of β-carotene was released within 2 h of incubation under the simulated intestinal fluid. These results showed that MFGM protein can be used as a good emulsifier in emulsion stabilization, β-carotene rapid release as well as lipophilic bioactive compounds delivery.  相似文献   

18.
Carapa guianensis, a popular medicinal plant known as “Andiroba” in Brazil, has been used in traditional medicine as an insect repellent and anti-inflammatory product. Additionally, this seed oil has been reported in the literature as a repellent against Aedes aegypti. The aim of this work is to report on the emulsification of vegetable oils such as “Andiroba” oil by using a blend of nonionic surfactants (Span 80® and Tween 20®), using the critical hydrophilic–lipophilic balance (HLB) and pseudo-ternary diagram as tools to evaluate the system’s stability. The emulsions were prepared by the inverse phase method. Several formulations were made according to a HLB spreadsheet design (from 4.3 to 16.7), and the products were stored at 25°C and 4°C. The emulsion stabilities were tested both long- and short-term, and the more stable one was used for the pseudo-ternary diagram study. The emulsions were successfully obtained by a couple of surfactants, and the HLB analysis showed that the required HLB of the oil was 16.7. To conclude, the pseudo-ternary diagram identified several characteristic regions such as emulsion, micro-emulsion, and separation of phases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号