首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The worldwide epidemic of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus called SARS-CoV. Coronaviruses and their closest relatives possess extremely large plus-strand RNA genomes and employ unique mechanisms and enzymes in RNA synthesis that separate them from all other RNA viruses. The SARS epidemic prompted a variety of studies on multiple aspects of the coronavirus replication cycle, yielding both rapid identification of the entry mechanisms of SARS-CoV into host cells and valuable structural and functional information on SARS-CoV proteins. These recent advances in coronavirus research have important implications for the development of anti-SARS drugs and vaccines.  相似文献   

2.
Identification of a new human coronavirus   总被引:29,自引:0,他引:29  
Three human coronaviruses are known to exist: human coronavirus 229E (HCoV-229E), HCoV-OC43 and severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV). Here we report the identification of a fourth human coronavirus, HCoV-NL63, using a new method of virus discovery. The virus was isolated from a 7-month-old child suffering from bronchiolitis and conjunctivitis. The complete genome sequence indicates that this virus is not a recombinant, but rather a new group 1 coronavirus. The in vitro host cell range of HCoV-NL63 is notable because it replicates on tertiary monkey kidney cells and the monkey kidney LLC-MK2 cell line. The viral genome contains distinctive features, including a unique N-terminal fragment within the spike protein. Screening of clinical specimens from individuals suffering from respiratory illness identified seven additional HCoV-NL63-infected individuals, indicating that the virus was widely spread within the human population.  相似文献   

3.
Severe acute respiratory syndrome (SARS) was discovered during a recent global outbreak of atypical pneumonia. A number of immunologic and molecular studies of the clinical samples led to the conclusion that a novel coronavirus (SARS-CoV) was associated with the outbreak. Later, a SARS resequencing GeneChip was developed by Affymetrix to characterize the complete genome of SARS-CoV on a single GeneChip. The present study was carried out to evaluate the performance of SARS resequencing GeneChips. Two human SARS-CoV strains (CDC#200301157 and Urbani) were resequenced by the SARS GeneChips. Five overlapping PCR amplicons were generated for each strain and hybridized with these GeneChips. The successfully hybridized GeneChips generated nucleotide sequences of nearly complete genomes for the two SARS-CoV strains with an average call rate of 94.6%. Multiple alignments of nucleotide sequences obtained from SARS GeneChips and conventional sequencing revealed full concordance. Furthermore, the GeneChip-based analysis revealed no additional polymorphic sites. The results of this study suggest that GeneChip-based genome characterization is fast and reproducible. Thus, SARS resequencing GeneChips may be employed as an alternate tool to obtain genome sequences of SARS-CoV strains pathogenic for humans in order to further understand the transmission dynamics of these viruses.  相似文献   

4.
Recently we have described the discovery and complete genome sequence of a novel coronavirus associated with pneumonia, coronavirus HKU1 (CoV-HKU1). In this study, a detailed in silico analysis of the ORF1ab, encoding the 7,182-amino acid replicase polyprotein in the CoV-HKU1 genome showed that the replicase polyprotein of CoV-HKU1 is cleaved by its papain-like proteases and 3C-like protease (3CL(pro)) into 16 polypeptides homologous to the corresponding polypeptides in other coronaviruses. Surprisingly, analysis of the putative cleavage sites of the 3CL(pro) revealed a unique putative cleavage site. In all known coronaviruses, the P1 positions at the cleavage sites of the 3CL(pro) are occupied by glutamine. This is also observed in CoV-HKU1, except for one site at the junction between nsp10 (helicase) and nsp11 (member of exonuclease family), where the P1 position is occupied by histidine. This amino acid substitution is due to a single nucleotide mutation in the CoV-HKU1 genome, CAG/A to CAT. This probably represents a novel cleavage site because the same mutation was consistently observed in CoV-HKU1 sequences from multiple specimens of different patients; the P2 and P1'-P12' positions of this cleavage site are consistent between CoV-HKU1 and other coronaviruses; and as the helicase is one of the most conserved proteins in coronaviruses, cleavage between nsp10 and nsp11 should be an essential step for the generation of the mature functional helicase. Experiments, including purification and C-terminal amino acid sequencing of the CoV-HKU1 helicase and trans-cleavage assays of the CoV-HKU1 3CL(pro) will confirm the presence of this novel cleavage site.  相似文献   

5.
6.
Wu S  Xu J  Liu J  Yan X  Zhu X  Xiao G  Sun L  Tien P 《The journal of gene medicine》2007,9(12):1080-1086
BACKGROUND: The worldwide epidemic of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus called SARS-CoV. We report the use of DNAzyme (catalytic DNA) to target the 5'-untranslated region (5'UTR) of a highly conserved fragment in the SARS genome as an approach to suppression of SARS-CoV replication. A mono-DNA enzyme (Dz-104) possessing the 10-23 catalytic motif was synthesized and tested both in vitro and in cell culture. MATERIALS AND METHODS: SARS-CoV total RNA was isolated, extracted from the SARS-CoV-WHU strain and converted into cDNA. We designed a RNA-cleaving 10-23 DNAzyme targeting at the loop region of the 5'UTR of SARS-CoV. The designed DNAzyme, Dz-104, and its mutant version, Dz-104 (mut), as a control consist of 9 + 9 arm sequences with a 10-23 catalytic core. In vitro cleavage was performed using an in vitro transcribed 5'UTR RNA substrate. A vector containing a fused 5'UTR and enhanced green fluorescent protein (eGFP) was co-transfected with the DNAzyme into E6 cells and the cells expressing eGFP were visualized with fluorescence microscopy and analyzed by fluorescence-activated cell sorting (FACS). RESULTS AND CONCLUSIONS: Our results demonstrated that this DNAzyme could efficiently cleave the SARS-CoV RNA substrate in vitro and inhibit the expression of the SARS-CoV 5'UTR-eGFP fusion RNA in mammalian cells. This work presents a model system to rapidly screen effective DNAzymes targeting SARS and provides a basis for potential therapeutic use of DNA enzymes to combat the SARS infection.  相似文献   

7.
MOTIVATION: The recent outbreak of severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV) has necessitated an in-depth molecular understanding of the virus to identify new drug targets. The availability of complete genome sequence of several strains of SARS virus provides the possibility of identification of protein-coding genes and defining their functions. Computational approach to identify protein-coding genes and their putative functions will help in designing experimental protocols. RESULTS: In this paper, a novel analysis of SARS genome using gene prediction method GeneDecipher developed in our laboratory has been presented. Each of the 18 newly sequenced SARS-CoV genomes has been analyzed using GeneDecipher. In addition to polyprotein 1ab(1), polyprotein 1a and the four genes coding for major structural proteins spike (S), small envelope (E), membrane (M) and nucleocapsid (N), six to eight additional proteins have been predicted depending upon the strain analyzed. Their lengths range between 61 and 274 amino acids. Our method also suggests that polyprotein 1ab, polyprotein 1a, S, M and N are proteins of viral origin and others are of prokaryotic. Putative functions of all predicted protein-coding genes have been suggested using conserved peptides present in their open reading frames. AVAILABILITY: Detailed results of GeneDecipher analysis of all the 18 strains of SARS-CoV genomes are available at http://www.igib.res.in/sarsanalysis.html  相似文献   

8.
9.
10.
Wu D  Tu C  Xin C  Xuan H  Meng Q  Liu Y  Yu Y  Guan Y  Jiang Y  Yin X  Crameri G  Wang M  Li C  Liu S  Liao M  Feng L  Xiang H  Sun J  Chen J  Sun Y  Gu S  Liu N  Fu D  Eaton BT  Wang LF  Kong X 《Journal of virology》2005,79(4):2620-2625
Severe acute respiratory syndrome (SARS) was caused by a novel virus now known as SARS coronavirus (SARS-CoV). The discovery of SARS-CoV-like viruses in masked palm civets (Paguma larvata) raises the possibility that civets play a role in SARS-CoV transmission. To test the susceptibility of civets to experimental infection by different SARS-CoV isolates, 10 civets were inoculated with two human isolates of SARS-CoV, BJ01 (with a 29-nucleotide deletion) and GZ01 (without the 29-nucleotide deletion). All inoculated animals displayed clinical symptoms, such as fever, lethargy, and loss of aggressiveness, and the infection was confirmed by virus isolation, detection of viral genomic RNA, and serum-neutralizing antibodies. Our data show that civets were equally susceptible to SARS-CoV isolates GZ01 and BJ01.  相似文献   

11.
Severe acute respiratory syndrome (SARS), caused by a novel coronavirus (CoV) known as SARS-CoV, is a contagious and life-threatening respiratory illness with pneumocytes as its main target. A full understanding of how SARS-CoV would interact with lung epithelial cells will be vital for advancing our knowledge of SARS pathogenesis. However, an in vitro model of SARS-CoV infection using relevant lung epithelial cells is not yet available, making it difficult to dissect the pathogenesis of SARS-CoV in the lungs. Here, we report that SARS-CoV can productively infect human bronchial epithelial Calu-3 cells, causing cytopathic effects, a process reflective of its natural course of infection in the lungs. Indirect immunofluorescence studies revealed a preferential expression of angiotensin-converting enzyme 2 (ACE-2), the functional receptor of SARS-CoV, on the apical surface. Importantly, both ACE-2 and viral antigen appeared to preferentially colocalize at the apical domain of infected cells. In highly polarized Calu-3 cells grown on the membrane inserts, we found that cells exposed to virus through the apical rather than the basolateral surface showed high levels of viral replication. Progeny virus was released into the apical chamber at titers up to 5 logs higher than those recovered from the basolateral chambers of polarized cultures. Taken together, these results indicate that SARS-CoV almost exclusively entered and was released from the apical domain of polarized Calu-3 cells, which might provide important insight into the mechanism of transmission and pathogenesis of SARS-CoV.  相似文献   

12.
Severe acute respiratory syndrome (SARS) is an emerging infectious disease associated with a novel coronavirus and causing worldwide outbreaks. SARS coronavirus (SARS-CoV) is an enveloped RNA virus, which contains several structural proteins. Among these proteins, spike (S) protein is responsible for binding to specific cellular receptors and is a major antigenic determinant, which induces neutralizing antibody. In order to analyze the antigenicity and receptor-binding ability of SARS-CoV S protein, we expressed the S protein in Escherichia coli using a pET expression vector. After the isopropyl-beta-D-thiogalactoside induction, S protein was expressed in the soluble form and purified by nickel-affinity chromatography to homogeneity. The amount of S protein recovered was 0.2-0.3mg/100ml bacterial culture. The S protein was recognized by sera from SARS patients by ELISA and Western blot, which indicated that recombinant S protein retained its antigenicity. By biotinylated ELISA and Western blot using biotin-labeled S protein as the probe, we identified 130-kDa and 140-kDa proteins in Vero cells that might be the cellular receptors responsible for SARS-CoV infection. Taken together, these results suggested that recombinant S protein exhibited the antigenicity and receptor-binding ability, and it could be a good candidate for further developing SARS vaccine and anti-SARS therapy.  相似文献   

13.
Severe acute respiratory syndrome (SARS), a new disease with symptoms similar to those of atypical pneumonia, raised a global alert in March 2003. Because of its relatively high transmissibility and mortality upon infection, probable SARS patients were quarantined and treated with special and intensive care. Therefore, instant and accurate laboratory confirmation of SARS-associated coronavirus (SARS-CoV) infection has become a worldwide interest. For this need, we purified recombinant proteins including the nucleocapsid (N), envelope (E), membrane (M), and truncated forms of the spike protein (S1–S7) of SARS-CoV inEscherichia coli. The six proteins N, E, M, S2, S5, and S6 were used for Western blotting (WB) to detect various immunoglobulin classes in 90 serum samples from 54 probable SARS patients. The results indicated that N was recognized in most of the sera. In some cases, S6 could be recognized as early as 2 or 3 days after illness onset, while S5 was recognized at a later stage. Furthermore, the result of recombinant-protein-based WB showed a 90% agreement with that of the whole-virus-based immunofluorescence assay. Combining WB with existing RT-PCR, the laboratory confirmation for SARS-CoV infection was greatly enhanced by 24.1%, from 48.1% (RT-PCR alone) to 72.2%. Finally, our results show that IgA antibodies against SARS-CoV can be detected within 1 week after illness onset in a few SARS patients.  相似文献   

14.
The emergence in 2003 of a new coronavirus (CoV) responsible for the atypical pneumonia termed severe acute respiratory syndrome (SARS) was a stark reminder that hitherto unknown viruses have the potential to cross species barriers to become new human pathogens. Here we describe the SARS-CoV 'spike' structure determined by single-particle cryo-EM, along with the docked atomic structures of the receptor-binding domain and prefusion core.  相似文献   

15.
The epidemic of the severe acute respiratory syndrome (SARS) has swept through the globe with more than 8000 reported probable cases. In Hong Kong, the hardest hit areas included our teaching hospital and the Amoy Gardens apartment complex. A novel coronavirus, SARS-coronavirus (SARS-CoV), with a single-stranded plus sense RNA genome, was promptly implicated as the causative agent and subsequently fulfilled Koch's postulates. To aid the understanding of SARS-CoV, groups of investigators rapidly sequenced viral isolates around the world. We were the third group in the world to release the complete SARS-CoV genome sequence (isolate CUHK-W1) on the world-wide web. With other isolates from patients of distinct epidemiological backgrounds, we additionally sequenced four complete (CUHK-Su10, CUHK-AG01, CUHK-AG02, CUHK-AG03) and two partial SARS-CoV genomes. The reviewed data obtained from representative patients from the hospital and community outbreaks has documented the evolution of the virus in this epidemic. Their sequence variations also revealed a remarkable epidemiological correlation. We demonstrate that sequence variations in the SARS-CoV genome can be applied as a powerful molecular tool in tracing the route of transmission, when used adjunctively with standard epidemiology.  相似文献   

16.
Severe acute respiratory syndrome (SARS) was discovered during a recent global outbreak of atypical pneumonia. A number of immunologic and molecular studies of the clinical samples led to the conclusion that a novel coronavirus (SARS-CoV) was associated with the outbreak. Later, a SARS resequencing GeneChip was developed by Affymetrix to characterize the complete genome of SARS-CoV on a single GeneChip. The present study was carried out to evaluate the performance of SARS resequencing GeneChips. Two human SARS-CoV strains (CDC#200301157 and Urbani) were resequenced by the SARS GeneChips. Five overlapping PCR amplicons were generated for each strain and hybridized with these GeneChips. The successfully hybridized GeneChips generated nucleotide sequences of nearly complete genomes for the two SARS-CoV strains with an average call rate of 94.6%. Multiple alignments of nucleotide sequences obtained from SARS GeneChips and conventional sequencing revealed full concordance. Furthermore, the GeneChip-based analysis revealed no additional polymorphic sites. The results of this study suggest that GeneChip-based genome characterization is fast and reproducible. Thus, SARS resequencing GeneChips may be employed as an alternate tool to obtain genome sequences of SARS-CoV strains pathogenic for humans in order to further understand the transmission dynamics of these viruses.  相似文献   

17.
A novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), has recently been identified as the causative agent of severe acute respiratory syndrome (SARS). SARS-CoV appears similar to other coronaviruses in both virion structure and genome organization. It is known for other coronaviruses that the spike (S) glycoprotein is required for both viral attachment to permissive cells and for fusion of the viral envelope with the host cell membrane. Here we describe the construction and expression of a soluble codon-optimized SARS-CoV S glycoprotein comprising the first 1,190 amino acids of the native S glycoprotein (S(1190)). The codon-optimized and native S glycoproteins exhibit similar molecular weight as determined by Western blot analysis, indicating that synthetic S glycoprotein is modified correctly in a mammalian expression system. S(1190) binds to the surface of Vero E6 cells, a cell permissive to infection, as demonstrated by fluorescence-activated cell sorter analysis, suggesting that S(1190) maintains the biologic activity present in native S glycoprotein. This interaction is blocked with serum obtained from recovering SARS patients, indicating that the binding is specific. In an effort to map the ligand-binding domain of the SARS-CoV S glycoprotein, carboxy- and amino-terminal truncations of the S(1190) glycoprotein were constructed. Amino acids 270 to 510 were the minimal receptor-binding region of the SARS-CoV S glycoprotein as determined by flow cytometry. We speculate that amino acids 1 to 510 of the SARS-CoV S glycoprotein represent a unique domain containing the receptor-binding site (amino acids 270 to 510), analogous to the S1 subunit of other coronavirus S glycoproteins.  相似文献   

18.
19.
SARS-CoV grows in a variety of tissues that express its receptor, although the mechanism for high replication in the lungs and severe respiratory illness is not well understood. We recently showed that elastase enhances SARS-CoV infection in cultured cells, which suggests that SARS development may be due to elastase-mediated, enhanced SARS-CoV infection in the lungs. To explore this possibility, we examined whether co-infection of mice with SARS-CoV and Pp, a low-pathogenic bacterium which elicits elastase production in the lungs, induces exacerbation of pneumonia. Mice co-infected with SARS-CoV and Pp developed severe respiratory disease with extensive weight loss, resulting in a 33~90% mortality rate. Mice with exacerbated pneumonia showed enhanced virus infection in the lungs and histopathological lesions similar to those found in human SARS cases. Intranasal administration of LPS, another elastase inducer, showed an effect similar to that of Pp infection. Thus, this study shows that exacerbated pneumonia in mice results from co-infection with SARS-CoV and a respiratory bacterium that induces elastase production in the lungs, suggesting a possible role for elastase in the exacerbation of pneumonia.  相似文献   

20.
Yuan X  Shan Y  Yao Z  Li J  Zhao Z  Chen J  Cong Y 《Molecules and cells》2006,21(2):186-191
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV), a distant member of the Group 2 coronaviruses, has recently been identified as the etiological agent of severe acute respiratory syndrome (SARS). The genome of SARS-CoV contains four structural genes that are homologous to genes found in other coronaviruses, as well as six subgroup-specific open reading frames (ORFs). ORF3 encodes a predicted 154-amino-acid protein that lacks similarity to any known protein, and is designated 3b in this article. We reported previously that SARS-CoV 3b is predominantly localized in the nucleolus, and induces G0/G1 arrest and apoptosis in transfected cells. In this study, we show that SARS-CoV 3b fused with EGFP at its N- or C- terminus co-localized with a mitochondria-specific marker in some transfected cells. Mutation analysis of SARS-CoV 3b revealed that the domain spanning amino acids 80 to 138 was essential for its mitochondria localization. These results provide new directions for studies of the role of SARS-CoV 3b protein in SARS pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号