首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
枯草芽孢杆菌(Bacillus Subtilis)H841肌苷产生菌是腺嘌呤、组氨酸、硫胺素三重缺陷型菌株,并对8—氮杂乌嘌呤、6—巯基嘌呤有抗性。在摇瓶中产肌胺18.1克/升,在2L自控发酵罐中最高可产肌苷19.6克/升,在流加葡萄糖情况下可产肌苷26.2克/升。控制pH较不控制pH发酵肌苷产量有较大的增加,控制pH发酵并补加营养时,肌苷产量可稳定地增长,但对葡萄糖的转化率是相同的。  相似文献   

2.
用枯草芽孢杆菌(Bacillus subtilis)产肌苷突变体24—36,在合成培养基巾探讨了核陵碱基等成份对肌苷积聚的影响,结果表明: 1.在所试验的7种碱基中,腺嘌呤对肌苷积聚影响最大,它的最适含量为200毫克/升,超过400毫克/升时肌苷积聚显著降低,但生长量达到最大值。 2.在腺嘌呤含丘为200毫克/升的培养基中加入适量尿嘧啶能促进菌帮本生长和肌侍积聚。 3.在腺嘌呤过量存在时,加入0.3%次黄嘌呤,肌苷积聚量可达最适腺螵呤时的合成量。 4.硫胺素营养缺陷型与其自发回复突变株积聚肌苷的能力无明显区别。 5.葡萄糖,(NH4)2SO45尿 素。L-谷氨酸对该菌生长和肌苷积聚均有一定影响,但以L-谷氨酸庄培养基中的含量影响最大。  相似文献   

3.
枯草杆菌JSIM-1019突变株肌苷发酵研究   总被引:4,自引:0,他引:4  
以肌苷产生菌枯草杆菌7171-9-1为出发菌株,经物理、化学诱变剂连续处理,获得一株腺嘌呤、组氨酸、硫胺素三重营养缺陷型并对8-氮杂鸟嘌呤、6-巯基嘌呤有双重抗性的突变株JSIM-1019。在摇瓶和发酵罐试验中,该变异株的肌苷产量显著高于亲株。摇瓶试验产肌苷达20g/L,最高可达24.83g/L。工业生产试验最高达14.5g/L,稳定在12g/L。发酵周期平均为43.8小时。菌株遗传性状稳定。  相似文献   

4.
肌苷产生菌枯草芽孢杆菌Bs菌株的选育和发酵条件   总被引:1,自引:1,他引:0  
1.用枯草芽孢杆菌(Bacillus subtilis)腺嘌呤营养缺陷型(ade-)No 18经1次亚硝基胍(MNNG)。诱变处理及2次单菌落分离,获得了能利用酶法制造葡萄糖3次结晶母液,发酵生产肌苷的变异菌株B,。在适宜条件下,摇瓶肌苷产量在7.0克/升以上。 2.不同来源的酵母粉及其在培养基中的含量,对肌苷产量均有显著影响。在所试验的酵母粉中,以北京光华木材厂生产的圆酵母最好,在种子和发酵培养基中的逢合用量分别为1.0一1.4%和1.2一1.4%。 3.在发酵过程中,次黄嘌呤的积聚和肌苷积聚有着明显的消长关系。4.枯草芽孢杆菌B4菌株具有很强的分段合成肌苷的能力,当添加0.3%次黄嘌呤时,可获得高于对照93.3%的肌苷产量,但转化率以添加0.1%次黄嘌呤时为最高。  相似文献   

5.
基因工程人α心钠素发酵研究   总被引:2,自引:0,他引:2  
本研究采用的基因工程菌为酵母Y33::YFD71-3,其基因型为α,his,1eu,ade,suc.摇瓶培养时心钠素的表达水平为l~2rag/L。在含有葡萄糖、YNB以及不同量腺嘌呤、组氨酸和亮氨酸的YG培养基中作摇瓶培养.当细胞的生长由腺嘌呤限制时,蛋白的分泌有明显增加·在YG培养基中加入5g/L的CAA后腺嘌呤成为限制性基质,培养基中腺嘌呤、YNB和亮氪酸用量对心钠素的表达有很大影响。在5L反应器中进行补料分批培养,流加葡萄糖、YNB、cAA、腺嘌呤、组氨酸和亮氨酸,心钠素的最高浓度达到24.8mg/L。  相似文献   

6.
采用多种方法诱变获得一株新型肌苷产生菌──产氨短杆菌(Brevibacteriumammoniagenes)GMBA-800(具有腺嘌呤、生物素双重营养缺陷型和对8-氮杂鸟嘌呤、磺胺胍、6-流基嘌呤有抗性),对其生长和发酵条件进行初步研究。肌苷产量从5g/L提高到18.41g/L,发酵周期从84h缩短为63h。菌株遗传性状稳定。  相似文献   

7.
培养基成分对杜仲愈伤组织生长及次生代谢产物含量的影响   总被引:10,自引:0,他引:10  
以Bs+0.5mg/L NAA+0.5mg/L BA为基本培养基,研究了B5培养基中8种主要无机盐浓度对杜仲愈伤组织生长及绿原酸和总黄酮两种次生代谢产物含量的影响。结果表明:在1000~5000mg/L范围内增加培养基中KNO3的含量有利于愈伤组织生长,B5培养基中当KNO3的浓度达到2/3时,绿原酸和总黄酮含量及产量最高;(NH4)2SO4以4/3原浓度时对愈伤组织生长量、总黄酮含量及产量最高,对绿原酸的含量则是其为原浓度的1/3时最高;MgSO4以2/3浓度对生长量及1/3浓度对绿原酸、总黄酮积累最高;NaH2PO4、CaCl2和MnSO4以原浓度的愈伤组织生长和次生代谢产物合成最好;ZnSO4和FeSO4的原浓度愈伤组织的生长量最大,而1/3浓度的绿原酸和总黄酮含量最高。  相似文献   

8.
枯草杆菌链霉素基因位点和腺嘌呤基因位点靠近,因此利用它们共同转化频率较高的特性,从链霉素转化体中筛选腺嘌呤缺陷型转化体。用此方法使受体菌株168获得了给体菌株18R_3腺嘌呤缺陷型与产肌苷的遗传特性,并从中进一步筛选获得肌苷产生菌“S14”,它的肌苷产量为给体菌株18R_3的119.5%。  相似文献   

9.
添加次黄嘌呤或腺嘌呤提高肌苷产量   总被引:1,自引:0,他引:1  
肌苷生产菌No.226具有将次黄嘌呤转变为肌苷的能力,添加次黄嘌呤有利于肌苷的积累。腺嘌呤缺陷型的肌苷生产菌株,在培养液中腺嘌呤的浓度对肌苷积累有显著影响。我们采用中国科学院上海生物化学研究所等单位选育的枯草芽孢杆菌7171-9-1菌株,进行舔加次黄嘌呤或腺嘌呤与酵母粉试验,现报道如下。  相似文献   

10.
在用环形培养池模拟系统培养雨生红球藻的过程中,研究了温度对雨生红球藻生物量及虾青素产量的影响。结果表明,在15~25℃的范围内,不同温度下雨生红球藻生物量和虾青素含量及产量都经历了一个上升一最高一下降的过程。25℃与22℃时红球藻的虾青素产量、虾青素含量(干重)均显著高于其他温度的(P<0.01),但两者间差异不显著(P>0.05)。15℃时,红球藻生物量、虾青素含量和虾青素产量均最低,分别为1.4g、0.54%和2.49mg/L,25℃时,红球藻生物量和虾青素产量最高,分别为2.68g和13.53mg/L,22℃时,虾青素含量最高,为1.52%。  相似文献   

11.
[14C]inosine in a range of concentrations of 20 microM to 1 mM was administered to the isolated perfused rat heart for 30 min. The incorporation of the nucleoside into myocardial adenine nucleotides increased for extracellular concentrations of the precursor up to 50 microM, reaching a plateau at 60 nmol . g-1 X 30 min-1 with concentrations ranging between 50 and 200 microM. The supply of 500 microM and 1 mM of inosine induced a further increase in cardiac adenine nucleotide synthesis to about 200 nmol . g-1 X 30 min-1. When supplied during low flow ischaemia (0.5 mL . min-1, 30 min.), 1 mM of inosine protected the heart against ATP degradation, while 100 microM of inosine was inefficacious. In the presence of 1 mM of inosine on reperfusion the adenine nucleotide content of the heart was similar to that observed in the absence of the nucleoside. The incorporation of [14C]inosine into adenine nucleotides was, in this last condition, below the value measured before ischaemia. Inosine administration was effective in protecting the heart against ischaemic breakdown of glycogen and favoured postischaemic restoration of glycogen stores.  相似文献   

12.
The effects of adenosine on adenine nucleotide metabolism in [14C]adenine-labeled rat thymocytes were studied. It was shown that adenosine increases the intracellular pool of adenine nucleotides, predominantly ATP, which is accompanied by marked acceleration of their catabolism and a release of labeled products (especially inosine, hypoxanthine and adenosine) from the thymocytes. The effect of adenosine depends on its concentration and manifests itself already at 10(-6) M. 2-Deoxycoformycin partly relieves the effect of adenosine on adenine nucleotide metabolism. Exogenous deoxyadenosine, inosine, hypoxanthine and adenine, unlike adenosine, do not significantly affect the adenine nucleotide catabolism and the label release from the cells. All the effectors under study strongly increase inosine transport from the thymocytes, and inhibit, with the exception of adenosine, the hypoxanthine release from the cells.  相似文献   

13.
Purine-requiring mutants of Salmonella typhimurium LT2 containing additional mutations in either adenosine deaminase or purine nucleoside phosphorylase have been constructed. From studies of the ability of these mutants to utilize different purine compounds as the sole source of purines, the following conclusions may be drawn. (i) S. typhimurium does not contain physiologically significant amounts of adenine deaminase and adenosine kinase activities. (ii) The presence of inosine and guanosine kinase activities in vivo was established, although the former activity appears to be of minor significance for inosine metabolism. (iii) The utilization of exogenous purine deoxyribonucleosides is entirely dependent on a functional purine nucleoside phosphorylase. (iv) The pathway by which exogenous adenine is converted to guanine nucleotides in the presence of histidine requires a functional purine nucleoside phosphorylase. Evidence is presented that this pathway involves the conversion of adenine to adenosine, followed by deamination to inosine and subsequent phosphorolysis to hypoxanthine. Hypoxanthine is then converted to inosine monophosphate by inosine monophosphate pyrophosphorylase. The rate-limiting step in this pathway is the synthesis of adenosine from adenine due to lack of endogenous ribose-l-phosphate.  相似文献   

14.
Improved inosine producers were found with a high frequency among the mutants resistant to a low concentration of 8-azaguanine derived from AMP deaminase negative adenine auxotrophs of Bacillus subtilis K strain. The best mutant accumulated 16~18 g/liter of inosine, 60~80% higher than the parent. PRPP amidotransferase and succino-AMP lyase of all of the improved inosine producers tested were not repressed by adenosine but still repressed by guanosine. Adenine permeability was suggested to be also altered in some of the mutants which produced inosine even in the presence of a high concentration of adenine. Adenine prototrophic revertants from all of the mutants tested accumulated a small amount of adenosine but not inosine.  相似文献   

15.
1. Pentatrichomonas hominis was found incapable of de novo synthesis of purines. 2. Pentatrichomonas hominis can salvage adenine, guanine, hypoxanthine, adenosine, guanosine and inosine, but not xanthine for the synthesis of nucleotides. 3. HPLC tracing of radiolabelled purines or purine nucleosides revealed that adenine, adenosine and hypoxanthine are incorporated into adenine nucleotides and IMP through a similar channel while guanine and guanosine are salvaged into guanine nucleotides via another route. There appears to be no direct interconversion between adenine and guanine nucleotides. Interconversion between AMP and IMP was observed. 4. Assays of purine salvage enzymes revealed that P. hominis possess adenosine kinase; adenosine, guanosine and inosine phosphotransferases; adenosine, guanosine and inosine phosphorylases and AMP deaminase.  相似文献   

16.
Adenine nucleotides of guinea-pig neocortical tissues were labelled by incubation with [(14)C]adenine and excess of adenine was then removed by superfusion with precursor-free medium. Adenine derivatives released from the tissue during continued superfusion, including a period of electrical stimulation of the tissue, were collected by adsorption and examined after elution and concentration. The stimulation greatly increased the (14)C output, and material collected during and just after stimulation had a u.v. spectrum which indicated adenosine to be a major component. The additional presence of inosine and hypoxanthine was shown by chromatography and adenosine was identified also by using adenosine deaminase. Total adenine derivatives released from the tissue during a 10min period of stimulation were obtained as hypoxanthine, after deamination and hydrolysis of adenosine and inosine, and amounted to 159nmol/g of tissue. This corresponded to the release of approx. 7pmol/g of tissue per applied stimulus. The hypoxanthine sample derived from superfusate hypoxanthine, inosine and adenosine was of similar specific radioactivity to the sample of inosine separated chromatographically, and each was of higher specific radioactivity than the adenine nucleotides obtained by cold-acid extraction of the tissue.  相似文献   

17.
Improvements were found in the inosine productivity of Brevibacterium ammoniagenes KY 13714, which is an adenine leaky and 6-mercaptoguanine resistant mutant. A highly productive mutant, KY 13761, was selected after the addition of 6-methyIthiopurine resistance and guanine requiring character to KY 13714 and after repeating single colony isolation.

Culture conditions for the practical production of inosine were investigated using KY 13761. It was found that the concentrations of phosphate, magnesium, and adenine were important. Carbon sources and natural nutrients also showed profound effects on inosine accumulation. Especially, effective was the feeding of inverted molasses and urea for production of inosine. Under optimal conditions, 31 mg of inosine per ml was accumulated after 42 hr cultivation in a 5 liter jar fermenter at 32°C. A growth-associated type of accumulation was confirmed in inosine production with KY 13761.  相似文献   

18.
A reliable assay was developed to characterize crude cell homogenates with regard to their adenine phosphoribosyltransferase activities. The 5-phosphoribosyl-1-pyrophosphate (PRPP)-dependent formation of AMP from adenine is followed spectrophotometrically at 265 nm by coupling it with the following two-stage enzymatic conversion: AMP + H2O----adenosine + Pi (5'-nucleotidase); adenosine + H2O----inosine + NH3 (adenosine deaminase). The same principle was applied to develop a spectrophotometric and a radioenzymatic assay for PRPP. The basis of the spectrophotometric assay is the absorbance change at 265 nm associated with the enzymatic conversion of PRPP into inosine, catalyzed by the sequential action of partially purified adenine phosphoribosyltransferase, commercial 5'-nucleotidase, and commercial adenosine deaminase, in the presence of excess adenine. In the radiochemical assay PRPP is quantitatively converted into [14C]inosine via the same combined reaction. Tissue extracts are incubated with excess [14C]adenine. The radioactivity of inosine, separated by a thin-layer chromatographic system, is a measure of PRPP present in tissue extracts. The radioenzymatic assay is at least as sensitive as other methods based on the use of adenine phosphoribosyltransferase. However, it overcomes the reversibility of the reaction and the need to use transferase preparations free of any phosphatase and adenosine deaminase activities.  相似文献   

19.
Summary The degradation of intramitochondrial adenine nucleotides to nucleosides and bases was investigated by incubating isolated rat liver mitochondria at 37°C under non-phosphorylating conditions in the presence of oligomycin and carboxyatractyloside. Within 30 min the adenine nucleotides were degraded by about 25 per cent. The main products formed were adenosine and inosine the contents of which increased five- to sevenfold.Compartmentation studies revealed that about 50 to 60 per cent of the adenosine formed remained inside the organelles whereas inosine was almost completely released into the surrounding medium. Outside the mitochondria only very small amounts of adenine nucleotides were detected. Similar incubations in the presence of [14C]-adenosine yielded no [14C]-inosine ruling out extramitochondrial adenosine deamination.It is concluded that endogenous adenine nucleotides can be degraded in mitochondria via AMP dephosphorylation and subsequent adenosine deamination. A purine nucleoside transport system mediating at least the efflux of inosine from the mitochondria is suggested.  相似文献   

20.
Metabolism of [14C]adenosine in a dose of 100 mg per 1 kg of mass and [14C]ATP in the equimolar quantity was studied in rats after intraperitoneal administration. Adenosine is shown to enter tissues of the liver, spleen, thymus, heart and erythrocytes where it phosphorylates into adenine nucleotides (mainly ATP) and deaminates into inosine. The content of adenosine increases for a short period in the above tissues, except for erythrocytes and plasma. The latter accumulates a considerable amount of inosine and hypoxanthine, but only traces of uric acid, xanthine and adenine nucleotides. ATP administered to rats catabolizes through the adenosine formation. The exogenic adenosine and ATP replace in tissues and erythrocytes only a slight part (1-12%) of their total adenine nucleotide pool. The content of these metabolites and ADP in the blood plasma does not change essentially under the effect of adenosine, ATP and AMP. It is shown on rats whose adenine nucleotide pool of cells is marked by the previous administration of [14C]adenine that injections of adenosine, ATP and inosine do not accelerate catabolism of adenine nucleotides in tissues and erythrocytes as well as do not increase the level of catabolism products in the blood plasma. Adenosine enhances and ATP lowers the content of cAMP in spleen and myocardium, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号