首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Thioredoxins comprise a conserved family of redox regulators involved in many biological processes, including stress resistance and aging. We report that the C. elegans thioredoxin TRX-1 acts in ASJ head sensory neurons as a novel modulator of the insulin-like neuropeptide DAF-28 during dauer formation. We show that increased formation of stress-resistant, long-lived dauer larvae in mutants for the gene encoding the insulin-like neuropeptide DAF-28 requires TRX-1 acting in ASJ neurons, upstream of the insulin-like receptor DAF-2. Genetic rescue experiments demonstrate that redox-independent functions of TRX-1 specifically in ASJ neurons are needed for the dauer formation constitutive (Daf-c) phenotype of daf-28 mutants. GFP reporters of trx-1 and daf-28 show opposing expression patterns in dauers (i.e. trx-1 is up-regulated and daf-28 is down-regulated), an effect that is not observed in growing L2/L3 larvae. In addition, functional TRX-1 is required for the down-regulation of a GFP reporter of daf-28 during dauer formation, a process that is likely subject to DAF-28-mediated feedback regulation. Our findings demonstrate that TRX-1 modulates DAF-28 signaling by contributing to the down-regulation of daf-28 expression during dauer formation. We propose that TRX-1 acts as a fluctuating neuronal signaling modulator within ASJ neurons to monitor the adjustment of neuropeptide expression, including insulin-like proteins, during dauer formation in response to adverse environmental conditions.  相似文献   

4.
H A Tissenbaum  G Ruvkun 《Genetics》1998,148(2):703-717
Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf-16 cause a dauer-defective phenotype and are epistatic to the diapause arrest and life span extension phenotypes of daf-2 and age-1 mutants. Here we show that mutations in this pathway also affect fertility and embryonic development. Weak daf-2 alleles, and maternally rescued age-1 alleles that cause life span extension but do not arrest at the dauer stage, also reduce fertility and viability. We find that age-1(hx546) has reduced both maternal and zygotic age-1 activity. daf-16 mutations suppress all of the daf-2 and age-1 phenotypes, including dauer arrest, life span extension, reduced fertility, and viability defects. These data show that insulin signaling, mediated by DAF-2 through the AGE-1 phosphatidylinositol-3-OH kinase, regulates reproduction and embryonic development, as well as dauer diapause and life span, and that DAF-16 transduces these signals. The regulation of fertility, life span, and metabolism by an insulin-like signaling pathway is similar to the endocrine regulation of metabolism and fertility by mammalian insulin signaling.  相似文献   

5.
Caenorhabditis elegans dauer formation is controlled by multiple environmental factors. The chemosensory neuron ASI regulates dauer formation by secretion of DAF-7/TGF-beta, but the molecular targets of the DAF-7 ligand are incompletely defined and the cellular targets are unknown. We genetically characterized and cloned a putative transducer of DAF-7 signaling called daf-14 and found that it encodes a Smad protein. DAF-14 Smad has a highly unusual structure completely lacking the N-terminal domain found in all other Smad proteins known to date. daf-14 genetically interacts with daf-8, which encodes another Smad, and the interaction suggests partial functional redundancy between these two Smad proteins. We also studied the cellular targets of DAF-7 signaling by studying the sites of action of daf-14 and daf-4, the putative receptor for DAF-7. daf-14::gfp is expressed in multiple tissues that are remodeled during dauer formation. However, analysis of mosaics generated by free duplication loss and tissue-specific expression constructs indicate cell-nonautonomous function of daf-4, arguing against direct DAF-7 signaling to tissues throughout the animal. Instead, these experiments suggest the nervous system as a target of DAF-7 signaling and that the nervous system in turn regulates dauer formation by other tissues.  相似文献   

6.
Abstract In Caenorhabditis elegans, the decision to develop into a reproductive adult or arrest as a dauer larva is influenced by multiple pathways including insulin-like and transforming growth factor beta (TGFbeta)-like signalling pathways. It has been proposed that lipophilic hormones act downstream of these pathways to regulate dauer formation. One likely target for such a hormone is DAF-12, an orphan nuclear hormone receptor that mediates these developmental decisions and also influences adult lifespan. In order to find lipophilic hormones we have generated lipophilic extracts from mass cultures of C. elegans and shown that they rescue the dauer constitutive phenotype of class 1 daf-2 insulin signalling mutants and the TGFbeta signalling mutant daf-7. These extracts are also able to rescue the lethal dauer phenotype of daf-9 mutants, which lack a P450 steroid hydroxylase thought to be involved in the synthesis of the DAF-12 ligand; extracts, however, have no effect on a DAF-12 ligand binding domain mutant that is predicted to be ligand insensitive. The production of this hormone appears to be DAF-9 dependent as extracts from a daf-9;daf-12 double mutant do not exhibit this activity. Preliminary fractionation of the lipophilic extracts shows that the activity is hydrophobic with some polar properties, consistent with a small lipophilic hormone. We propose that the dauer rescuing activity is a hormone synthesized by DAF-9 that acts through DAF-12.  相似文献   

7.
8.
9.
10.
The dauer larva of the nematode Caenorhabditis elegans is a good model system for investigating the regulation of developmental fates by environmental cues. Here we show that SDF-9, a protein tyrosine phosphatase-like molecule, is involved in the regulation of dauer larva formation. The dauer larva of sdf-9 mutants is different from a normal dauer larva but resembles the dauer-like larva of daf-9 and daf-12 dauer-constitutive mutants. Like these mutants, the dauer-constitutive phenotypes of sdf-9 mutants were greatly enhanced by cholesterol deprivation. Epistasis analyses, together with the relationship between sdf-9 mutations and daf-9 expression, suggested that SDF-9 increases the activity of DAF-9 or helps the execution of the DAF-9 function. SDF-9 was expressed in two head cells in which DAF-9 is expressed. By their position and by genetic mosaic experiments, we identified these cells as XXXL/R cells, which are known as embryonic hypodermal cells and whose function at later stages is unknown. Killing of the sdf-9-expressing cells in the wild-type first-stage larva induced formation of the dauer-like larva. Since this study on SDF-9 and former studies on DAF-9 showed that the functions of these proteins are related to those of steroids, XXXL/R cells seem to play a key role in the metabolism or function of a steroid hormone(s) that acts in dauer regulation.  相似文献   

11.
12.
13.
EM Myers 《PloS one》2012,7(7):e40368
Caenorhabditis elegans enter an alternate developmental stage called dauer in unfavorable conditions such as starvation, overcrowding, or high temperature. Several evolutionarily conserved signaling pathways control dauer formation. DAF-7/TGFβ and serotonin, important ligands in these signaling pathways, affect not only dauer formation, but also the expression of one another. The heterotrimeric G proteins GOA-1 (Gα(o)) and EGL-30 (Gα(q)) mediate serotonin signaling as well as serotonin biosynthesis in C. elegans. It is not known whether GOA-1 or EGL-30 also affect dauer formation and/or daf-7 expression, which are both modulated in part by serotonin. The purpose of this study is to better understand the relationship between proteins important for neuronal signaling and developmental plasticity in both C. elegans and humans. Using promoter-GFP transgenic worms, it was determined that both goa-1 and egl-30 regulate daf-7 expression during larval development. In addition, the normal daf-7 response to high temperature or starvation was altered in goa-1 and egl-30 mutants. Despite the effect of goa-1 and egl-30 mutations on daf-7 expression in various environmental conditions, there was no effect of the mutations on dauer formation. This paper provides evidence that while goa-1 and egl-30 are important for normal daf-7 expression, mutations in these genes are not sufficient to disrupt dauer formation.  相似文献   

14.
15.
Global analysis of dauer gene expression in Caenorhabditis elegans   总被引:7,自引:0,他引:7  
  相似文献   

16.
17.
Parallel pathways control C. elegans reproductive development in response to environmental cues. Attenuation of daf-2 insulin-like or daf-7 TGFbeta-like signaling pathways cause developmental arrest at the stress resistant and long-lived dauer stage. Loss-of-function mutations in the cytochrome P450 gene daf-9 also cause dauer arrest and defects in cell migration. A rescuing daf-9::GFP fusion gene driven by the daf-9 promoter is expressed in two head cells at all stages, in the hypodermis from mid-second larval stage (L2) to the fourth larval stage (L4), and in the spermatheca of the adult hermaphrodite. Although the level of daf-9::GFP expression in the head cells and spermatheca is constant, hypodermal daf-9::GFP expression is modulated by multiple inputs. In particular, daf-9::GFP expression in the hypodermis is absolutely dependent on daf-12, the nuclear receptor that is negatively regulated by daf-9 gene activity, suggesting feedback control between daf-9 and daf-12 in this tissue. daf-9 expression exclusively in the hypodermis is sufficient to restore reproductive development in daf-9 mutant animals, suggesting that daf-9 functions in a cell nonautonomous manner. Furthermore, constitutive expression of daf-9 in the hypodermis suppresses dauer arrest of daf-7 mutant animals and inhibits dauer remodelling of some tissues in daf-2 mutant animals. Thus, daf-9 may integrate outputs from daf-2 and daf-7 signaling pathways to relay neuroendocrine signals through synthesis of a lipophilic hormone.  相似文献   

18.
19.
The DAF-7/TGF-beta pathway in C. elegans interprets environmental signals relayed through amphid neurons and actively inhibits dauer formation during reproductive developmental growth . In metazoans, the STAT pathway interprets external stimuli through regulated tyrosine phosphorylation, nuclear translocation, and gene expression , but its importance for developmental commitment, particularly in conjunction with TGF-beta, remains largely unknown. Here, we report that the nematode STAT ortholog STA-1 accumulated in the nuclei of five head neuron pairs, three of which are amphid neurons involved in dauer formation . Moreover, sta-1 mutants showed a synthetic dauer phenotype with selected TGF-beta mutations. sta-1 deficiency was complemented by reconstitution with wild-type protein, but not with a tyrosine mutant. Canonical TGF-beta signaling involves the DAF-7/TGF-beta ligand activating the DAF-1/DAF-4 receptor pair to regulate the DAF-8/DAF-14 Smads . Interestingly, STA-1 functioned in the absence of DAF-7, DAF-4, and DAF-14, but it required DAF-1 and DAF-8. Additionally, STA-1 expression was induced by TGF-beta in a DAF-3-dependent manner, demonstrating a homeostatic negative feedback loop. These results highlight a role for activated STAT proteins in repression of dauer formation. They also raise the possibility of an unexpected function for DAF-1 and DAF-8 that is independent of their normal upstream activator, DAF-7.  相似文献   

20.
The Notch signalling pathway is conserved among higher metazoans and is used repeatedly throughout development to specify distinct cell fates among populations of equipotent cells. Mounting evidence suggests that Notch signalling may also be crucial in neuronal function in postmitotic, differentiated neurons. Here, we demonstrate a novel role for the canonical Notch signalling pathway in postmitotic neurons during a specialised ;diapause-like' post-embryonic developmental stage in C. elegans called dauer. Our data suggest that cell signalling downstream of the developmental decision to enter dauer leads to the activation of Notch-responding genes in postmitotic neurons. Consistent with this, we demonstrate that glp-1, one of the two C. elegans Notch receptors, and its ligand lag-2 are expressed in neurons during the dauer stage, and both genes are required to maintain this stage in a daf-7/TGFbeta dauer constitutive background. Our genetic data also suggest that a second Notch receptor, lin-12, functions upstream of, or in parallel with, insulin-like signalling components in response to replete growth conditions to promote dauer recovery. Based on our findings, cues associated with the onset of dauer ultimately trigger a glp-1-dependent Notch signalling cascade in neurons to maintain this developmental state. Then, as growth conditions improve, activation of the LIN-12 Notch receptor cooperates with the insulin-like signalling pathway to signal recovery from the dauer stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号