首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
F. Diederichs 《Cell calcium》1997,22(6):487-496
Cell damage of the Langendorff-perfused rat heart in response to a decrease of both [Ca2+]e and [H+]e is described. At pHe = 7.7, lactate dehydrogenase (LDH) release could be induced during perfusion with media of reduced [Ca2+]e (0.1–0.4 mmol/I). Decreasing pHe to normal abolished LDH release. The gap junction channel blocker heptanol (2 mmol/I) also reduced enzyme release, and polyethylene glycol (9% PEG6000) totally prevented cell damage. Elevation of buffer capacity of perfusion media or perfusion flow both increased LDH release. Cell damage could also be aggravated by substituting 10 mmol/I of [Na+]e by foreign cations. At [Ca2+]e = 0.1 mmol/I and pHe = 7.7, [Ca2+]i and [Na+]i of non-lysed cells were markedly increased (in HCO3/CO2 buffered media to about 7.0 μmol/I and 36 mmol/I, respectively; in HEPES-buffered media, to about 5.0 μmol/I and 55 mmol/l; physiological values of [Ca2+]i and [Na+]i are around 0.1 μmol/I and 10 mmol/I, respectively), whereas pHi was not appreciably elevated. In contrast to myocytes in the intact heart, [Ca2+]i of isolated cardiomyocytes under similar conditions was decreased to about 75 nmol/I and LDH release was negligible; pHi of isolated cardiomyocytes, as in intact myocardium, did not change appreciably. The results indicate that Ca2+ overload is produced at lowered [Ca2+]e and [H+]e by an influx of Ca2+ through gap junctional leaks.  相似文献   

2.
Abstract: Cytosolic free Ca2+ concentration ([Ca2+]i) was measured in differentiated PC12 cells to test whether chemical hypoxia selectively alters intracellular Ca2+ in growth cones and cell bodies. Hypoxia increased [Ca2+]i and exaggerated its response to K+ depolarization in both parts of the cells. [Ca2+]i in the cell bodies was greater than that in the growth cones under resting conditions and in response to K+ or hypoxia. Ca2+-channel blockers selectively altered these responses. The L-channel blocker nifedipine reduced [Ca2+]i following K+ depolarization by 67% in the cell bodies but only 25% in the growth cones. In contrast, the N-channel blocker ω-conotoxin GVIA (ω-CgTX) diminished K+-induced changes in [Ca2+]i only in the growth cones. During hypoxia, nifedipine was more effective in the cell bodies than in the growth cones. During hypoxia, ω-CgTX diminished K+-induced changes by 50–75% in both parts of the cell, but only immediately after depolarization. The combination of nifedipine and ω-CgTX diminished the [Ca2+]i response to K+ with or without hypoxia by >90% in the cell body and 70% in the growth cones. Thus, the increased Ca2+ entry with K+ during hypoxia is primarily through L channels in the cell bodies, whereas in growth cones influx through L and N channels is about equal. The results show that chemical hypoxia selectively alters Ca2+ regulation in the growth cone and cell body of the same cell.  相似文献   

3.
Alterations in intracellular free calciumconcentration ([Ca2+]i) areinstrumental in apoptosis. We have previously shown that a[Ca2+]i increase above 1000 nM isrelated to the appearance of apoptosis in serum-free cultures ofgranulosa cell sheets. In the present study we examined how the[Ca2+]i increase relates toindicators of distinct phases of the apoptotic cascade. We used adouble staining technique whereby loading with theCa2+ indicator fura-2 and capture of a[Ca2+]i image, was followed bystaining with annexin-V, as an early apoptotic marker or withacridine orange, marking the late degradation phase. Calcium imagingshowed a large heterogeneity of cellular[Ca2+]i levels. [Ca2+]i was moderately increased to230 nM in annexin positive cells but was at resting levelin cells with nuclear manifestations of apoptosis as evidenced byacridine orange. Our results suggest that a moderate[Ca2+]i increase is related tophosphatidylserine translocation and that[Ca2+]i has already recovered inapoptotic cells displaying chromatin condensation and/or nuclearfragmentation. Granulosa cells with[Ca2+]i above 1000 nM were neverobserved to stain positive for the apoptotic markers used; therefore,large [Ca2+]i increases areprobably related to the apoptosis initiation phase occurring upstreamof phosphatidylserine exposure.  相似文献   

4.
We have investigated the effect of 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, on carbachol-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in human neuroblastoma SH-SY5Y cells by means of single cell imaging of [Ca2+]i. SIN-1 potentiated carbachol-induced [Ca2+]i rise regardless of external Ca2+, and the potentiation was completely inhibited by superoxide dismutase, indicating that peroxynitrite may enhance Ca2+ release from intracellular stores. On the other hand, SIN-1 reduced carbachol-induced inositol 1,4,5-trisphosphate (IP3) formation. Genistein, a tyrosine kinase inhibitor, potentiated carbachol-induced rise of [Ca2+]i regardless of external Ca2+. These results suggest that peroxynitrite may potentiate the release of Ca2+ from intracellular stores through the perturbation of regulation in tyrosine phosphorylation-dephosphorylation system.  相似文献   

5.
Summary Intracellular calcium [Ca2+] i measurements in cell suspension of gastrointestinal myocytes have suggested a single [Ca2+] i transient followed by a steady-state increase as the characteristic [Ca2+] i response of these cells. In the present study, we used digital video imaging techniques in freshly dispersed myocytes from the rabbit colon, to characterize the spatiotemporal pattern of the [Ca2+] i signal in single cells. The distribution of [Ca2+] i in resting and stimulated cells was nonhomogeneous, with gradients of high [Ca2+] i present in the subplasmalemmal space and in one cell pole. [Ca2+] i gradients within these regions were not constant but showed temporal changes in the form of [Ca2+] i oscillations and spatial changes in the form of [Ca2+] i waves. [Ca2+] i oscillations in unstimulated cells (n = 60) were independent of extracellular [Ca2+] and had a mean frequency of 12.6 +1.1 oscillations per min. The baseline [Ca2+], was 171 ± 13 nm and the mean oscillation amplitude was 194 ± 12 nm. Generation of [Ca2+] i waves was also independent of influx of extracellular Ca2+. [Ca2+] i waves originated in one cell pole and were visualized as propagation mostly along the subplasmalemmal space or occasionally throughout the cytoplasm. The mean velocity was 23 +3 m per sec (n = 6). Increases of [Ca2+] i induced by different agonists were encoded into changes of baseline [Ca2+] i and the amplitude of oscillations, but not into their frequency. The observed spatiotemporal pattern of [Ca2+] i regulation may be the underlying mechanism for slow wave generation and propagation in this tissue. These findings are consistent with a [Ca2+] i regulation whereby cell regulators modulate the spatiotemporal pattern of intracellularly generated [Ca2+] i oscillations.The authors thank Debbie Anderson for excellent technical assistance with the electron microscopy and Dr. M. Regoli for providing the NK-1 agonist [Sar9,Met(O2)11]-SP. This work was supported by National Institutes of Health Grants DK 40919 and DK 40675 and Veterans Administration Grant SMI.  相似文献   

6.
大黄素影响巨噬细胞升高[Ca2+]i 和释放TNF-α的作用特征   总被引:6,自引:0,他引:6  
为了研究大黄素(emodin)对正常的和细菌脂多糖(LPS)刺激的大鼠腹腔巨噬细胞(PMφ)释放肿瘤坏死因子α(TNF-α)和升高[Ca^2 ]i的影响,应用L929细胞系和MTT法检测TNF-α量,同时用激光共焦扫描显微术检测单细胞[Ca^2 ]i变化动力学。结果显示大黄素能轻度促进正常PMφ释放TNF-α,并发现大黄素诱发PMφ[Ca^2 ]i变化呈振荡波模式。大黄紫显著抑制LPS刺激PMφ过度释放TNF-α和升高[Ca^2 ]i,10^-5mol/L大黄素抑制了10mg/L LPS刺激的TNF-α峰值的50%和[Ca^2 ]i峰值的68%。LPS诱发MPφ[Ca^2 ]i变化呈现高幅值的“平台期”,大黄素使之转变为低幅值的波动变化。以上结果说明,大黄素对PMφ释放TNF-α和升高[Ca^2 ]i表现出的双向调节作用之间有一定的相关性,大黄素对LPS诱发的[Ca^2 ]i升高的调制,可能是抑制LPS刺激PMφ释放TNF-α的信号传导通路中的重要环节。  相似文献   

7.
The effect of hyposmotic and isosmotic cell swelling on the free intracellular calcium concentration ([Ca2+]i) in rat mammary acinar cells has been examined using the fura-2 dye technique. A hyposmotic shock (40% reduction) increased the [Ca2+]i in rat mammary acinar cells in a fashion which was transient; the [Ca2+]i returned to a value similar to that found under isomotic conditions within 180 sec. The increase in the [Ca2+]i was dependent upon the extent of the osmotic shock. The hyposmotically-activated increase in the [Ca2+]i could not be attributed to a reduction in extracellular Na+ or a change in the ionic strength of the incubation medium. Thapsigargin (1 M) enhanced the hyposmotically-activated increase in the [Ca2+]i. Isosmotic swelling of rat mammary acinar cells, using urea, had no significant effect on the [Ca2+]i. Similarly, a hyperosmotic shock did not affect the [Ca2+]i in rat mammary acinar cells. It appears that the effect of cell swelling on the [Ca2+]i in rat mammary acinar cells depends on how the cells are swollen (hyposmotic vs. isosmotic). This finding may have important physiological implications given that it is predicted that mammary cell volume will change in vivo under isomotic conditions.  相似文献   

8.
Cytosolic Ca2+· ([Ca2+]i, and elongation growth were measured in the roots of Arabidopsis thaliana. Exposure of plant tissues to high NaCl and abscisic acid (ABA) concentrations results in a reduction in the rate of growth, but the mechanism by which growth is inhibited is not understood. Both NaCl and ABA treatments are known to influence [Ca2+]i, and in this study we measured the effects of salinity and ABA on [Ca2+]i in cells from the meristematic region of Arabidopsis roots. The Ca2+-sensitive dye Fura-2 and ratiometric techniques were used to measure [Ca2+]i in cells of the root meristem region. Resting [Ca2+]i was found to be between 100 and 200 μmol m?3 in roots of untreated plants. Resting [Ca2+]i changed in response to changes in the [Ca2+] surrounding growing roots. An increase of external [Ca2+] increased [Ca2+]i; conversely, a decrease of external [Ca2+] decreased [Ca2+]i. Exposure of roots to NaCl caused a rapid reduction of [Ca2+]i, a response that was proportional to the external NaCl concentration. Thus, as the NaCl concentration was increased, [Ca2+]i in root meristematic cells decreased. Root elongation was also inhibited in proportion to the external NaCl concentration, with maximal inhibition occurring at 120 mol m?3 NaCl. The [Ca2+]i of root meristem cells also changed in response to ABA, and the magnitude of the effect of ABA was dependent upon ABA concentration. Treatment with 0.2 mmol m?3 ABA caused a momentary increase in [Ca2+]i followed by a decrease after 15 min, but 10 mmol m?3 ABA caused an immediate decline in [Ca2+]i. There was a strong positive correlation between [Ca2+]i and root elongation rates. Experiments with the ABA-deficient Arabidopsis mutant aba-3 indicated that the reduction in [Ca2+]i brought about by NaCl was unlikely to be mediated via changes in endogenous ABA. Experiments with solutes such as sorbitol, KCl and NaNO3 indicated that the effects of NaCl could be mimicked by other solutes and was not specific for NaCl.  相似文献   

9.
This study examined [Ca2+]i oscillations in the human salivary gland cell lines, HSY and HSG. Relatively low concentrations of carbachol (CCh) induced oscillatory, and higher [CCh] induced sustained, steady-state increases in [Ca2+]i and K Ca currents in both cell types. Low IP3, but not thapsigargin (Tg), induced [Ca2+]i oscillations, whereas Tg blocked CCh-stimulated [Ca2+]i oscillations in both cell types. Unlike in HSG cells, removal of extracellular Ca2+ from HSY cells (i) did not affect CCh-stimulated [Ca2+]i oscillations or internal Ca2+ store refill, and (ii) converted high [CCh]-induced steady-state increase in [Ca2+]i into oscillations. CCh- or thapsigargin-induced Ca2+ influx was higher in HSY, than in HSG, cells. Importantly, HSY cells displayed relatively higher levels of sarcoendoplasmic reticulum Ca2+ pump (SERCA) and inositoltrisphosphate receptors (IP3Rs) than HSG cells. These data demonstrate that [Ca2+]i oscillations in both HSY and HSG cells are primarily determined by the uptake of Ca2+ from, and release of Ca2+ into, the cytosol by the SERCA and IP3R activities, respectively. In HSY cells, Ca2+ influx does not acutely contribute to this process, although it determines the steady-state increase in [Ca2+]i. In HSG cells, [Ca2+]i oscillations directly depend on Ca2+ influx; Ca2+ coming into the cell is rapidly taken up into the store and then released into the cytosol. We suggest that the differences in the mechanism of [Ca2+]i oscillations HSY and HSG cells is related to their respective abilities to recycle internal Ca2+ stores. Received: 30 October 2000/Revised: 26 February 2001  相似文献   

10.
Summary A technique is devised to determine the spatial distribution of the free ionized cytoplasmic calcium concentration ([Ca2+] i ) inside a cell:Chironomus salivary gland cells are loaded with aequorin, and the Ca2+-dependent light emission of the aequorin is scanned with an image-intensifier/television system. With this technique, the [Ca2+] i is determined simultaneously with junctional electrical coupling when Ca2+ is microinjected into the cells, or when the cells are exposed to metabolic inhibitors, Ca-transporting ionophores, or Ca-free medium. Ca microinjections elevating the [Ca2+] i the junctional locale produce depression of junctional membrane conductance. When the [Ca2+] i elevation is confined to the vicinity of one cell junction, the conductance of that junction alone is depressed; other junctions of the same cell are not affected. The depression sets in as the [Ca2+] i rises in the junctional locale, and reverses after the [Ca2+] i falls to baseline. When the [Ca2+] i elevation is diffuse throughout the cell, the conductances of all junctions of the cell are depressed. The Ca injections produce no detectable [Ca2+] i elevations in cells adjacent to the injected one; the Ca-induced change in junctional membrane permeability seems fast enough to block appreciable transjunctional flow of Ca2+. Control injections of Cl or K+ do not affect junctional conductance. The Ca injections that elevate [Ca2+] i sufficiently to depress junctional conductance also produce under the usual conditions an increase in nonjunctional membrane conductance and, hence, depolarization. But injections that elevate [Ca2+] i at the junction while largely avoiding nonjunctional membrane cause depression of junctional conductance with little or no depolarization. Moreover, elevations of [Ca2+] i in cells clamped near resting potential produce the depression, too. On the other hand, complete depolarization in K medium does not produce the depression, unless accompanied by [Ca2+] i elevation. Thus, the depolarization is neither necessary nor sufficient for depression of junctional conductance. Treatment with cyanide, dinitrophenol and ionophores X537 A or A23187 produces diffuse elevation of [Ca2+] i associated with depression of nunctional conductance. Prolonged exposure to Ca-free medium leads to fluctuation in [Ca2+] i where rise and fall of [Ca2+] i correlate respectively with fall and rise in junctional conductance.  相似文献   

11.
Summary This report summarizes our recent work on the role of intracellular Ca2+ ([Ca2+]i) in regulating mammalian ciliary beat frequency (CBF). CBF from a single ovine cilium and [Ca2+]i from the same cell were measured by digital video phase contrast microscopy and fura-2 ratiometric imaging video microscopy, respectively. Cells were stimulated with two exposures to 10 M acetylcholine (ACh). CBF was recorded during the first and [Ca2+]i during the second stimulation. ACh increased [Ca2+]i and CBF transiently with indistinguishable kinetics and, early in culture, even induced [Ca2+]i oscillations and ciliary frequency modulations with the same peak-to-peak time interval. Cells treated with 1 M thapsigargin, an inhibitor of the endoplasmic-reticulum Ca2+-ATPase, showed transient [Ca2+]i and CBF increases, again with similar kinetics, which often remained at an elevated plateau. Application of ACh to cells pretreated with thapsigargin produced decreases in both [Ca2+]i and CBF. Finally, changing extracellular Ca2+-concentrations induced corresponding changes in [Ca2+]i that were associated with kinetically similar CBF changes. These data strongly suggested that [Ca2+]i is a critical signal to regulate CBF in mammalian tracheal epithelial cells. In an initial effort to provide constraints on the number and type of reactions that link changes in [Ca2+]i to changes in CBF, simultaneous recordings of both signals from a single cell were analyzed. Such recordings provided higher resolution of the kinetic responses of CBF and [Ca2+]i to ACh as well as they allowed direct assessment of the coupling between [Ca2+]i and CBF. Simultaneous measurements revealed that [Ca2+]i and CBF were perfectly correlated within the CBF measurement time resolution, except for the period of the fastest changes in both signals during the initial ACh exposure. There, changes in CBF lagged the changes in [Ca2+]i by 1–3 ciliary beat cycles (ca. 150–450 ms).  相似文献   

12.
Calcium (Ca2+)-activated K+ (KCa) channels regulate membrane excitability and are activated by an increase in cytosolic Ca2+ concentration ([Ca2+]i), leading to membrane hyperpolarization. Most patch clamp experiments that measure KCa currents use steady-state [Ca2+] buffered within the patch pipette. However, when cells are stimulated physiologically, [Ca2+]i changes dynamically, for example during [Ca2+]i oscillations. Therefore, the aim of the present study was to examine the effect of dynamic changes in [Ca2+]i on small (SK3), intermediate (hIK1), and large conductance (BK) channels. HEK293 cells stably expressing each KCa subtype in isolation were used to simultaneously measure agonist-evoked [Ca2+]i signals, using indo-1 fluorescence, and current/voltage, using perforated patch clamp. Agonist-evoked [Ca2+]i oscillations induced a corresponding KCa current that faithfully followed the [Ca2+]i in 13–50% of cells, suggesting a good synchronization. However, [Ca2+]i and KCa current was much less synchronized in 50–76% of cells that exhibited Ca2+-independent current events (55% of SK3-, 50% of hIK1-, and 53% of BK-expressing cells) and current-independent [Ca2+]i events (18% SK3- and 33% of BK-expressing cells). Moreover, in BK-expressing cells, where [Ca2+]i and KCa current was least synchronized, 36% of total [Ca2+]i spikes occurred without activating a corresponding KCa current spike, suggesting that BKCa channels were either inhibited or had become desensitized. This desynchronization between dynamic [Ca2+]i and KCa current suggests that this relationship is more complex than could be predicted from steady-state [Ca2+]i and KCa current. These phenomena may be important for encoding stimulus–response coupling in various cell types.  相似文献   

13.
Using spectrofluorescence imaging of fura-2 loaded renal A6 cells, we have investigated the generation of the cytosolic Ca2+ signal in response to osmotic shock and localized membrane stretch. Upon hypotonic exposure, the cells began to swell prior to a transient increase in [Ca2+] i and the cells remained swollen after [Ca2+] i had returned towards basal levels. Exposure to 2/3rd strength Ringer produced a cell volume increase within 3 min, followed by a slow regulatory volume decrease (RVD). The hypotonic challenge also produced a transient increase in [Ca2+] after a delay of 22 sec. Both the RVD and [Ca2+] i response to hypotonicity were inhibited in a Ca2+-free bathing solution and by gadolinium (10 μm), an inhibitor of stretch-activated channels. Stretching the membrane by application of subatmospheric pressure (-2 kPa) inside a cell-attached patch-pipette induced a similar global increase in [Ca2+] i as occurred after hypotonic shock. A stretch-sensitive [Ca2+] i increase was also observed in a Ca2+-free bathing solution, provided the patch-pipette contained Ca2+. The mechanosensitive [Ca2+] i response was by gadolinium (10 μm) or Ca2+-free pipette solutions, even when Ca2+ (2 mm) was present in the bath. Long-term (>10 min) pretreatment of the cells with thapsigargin inhibited the [Ca2+] i response to hypotonicity. These results provide evidence that cell swelling or mechanical stimulation can activate a powerful amplification system linked to intracellular Ca2+ release mechanisms. Received: 3 August 1998/Revised: 19 November 1998  相似文献   

14.
Abstract: The human neuroblastoma cell line SH-SY5Y, maintained at confluence for 14 days, released [3H]-noradrenaline ([3H]NA) when stimulated with either the muscarinic receptor agonist methacholine or bradykinin. The major fraction of release was rapid, occurring in <10 s, whereas nicotine-evoked release was slower. When the extracellular [Ca2+] ([Ca2+]e) was buffered to ~50–100 nM, release evoked by nicotine was abolished, whereas that in response to methacholine or bradykinin was reduced by ~50% with EC50 values of ?5.46 ± 0.05 M and ?7.46 ± 0.06 M (log10), respectively. Methacholine and bradykinin also produced rapid elevations of both inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and intracellular free [Ca2+] ([Ca2+]i). These elevations were reduced at low [Ca2+]e and under these conditions the EC50 values for peak elevation of [Ca2+]i were ?6.00 ± 0.14 M for methacholine and ?7.95 ± 0.34 M for bradykinin (n = 3 for all EC50 determinations). At low [Ca2+]e, depletion of nonmitochondrial intracellular Ca2+ stores with the Ca2+-ATPase inhibitor thapsigargin produced a transient small elevation of [Ca2+]i and a minor release of [3H]NA. At low [Ca2+]e, thapsigargin abolished elevation of [Ca2+]i in response to methacholine and bradykinin and completely inhibited their stimulation of [3H]NA release. It is proposed, therefore, that Ca2+ release from Ins(1,4,5)P3-sensitive stores is a major trigger of methacholine- and bradykinin-evoked [3H]NA release in SH-SY5Y cells.  相似文献   

15.
Summary The effect of taurine on the cellular distribution of [Ca2+]i, during the calcium paradox was examined by digital imaging of a single fura-2-loaded cell. Cardiomyocytes superfused with control medium containing 2mM Ca2+ exhibited typical transients associated with spontaneous beating. When the cells were exposed to Ca2+-free buffer, immediate cessation of both spontaneous contractions and calcium transients was observed as [Ca2+]; rapidly fell to a level of 3–6 × 10–8M. Subsequent restoration of medium calcium increased [Ca2+]i to level 4–7 times normal. Large increases in [Ca2+]i were observed in most cells and were associated with the development of contracture and bleb formation.Taurine pretreatment (20mM) caused no significant effect on [Ca2+]i during Ca2+ depletion. However, it inhibited excessive accumulation of [Ca2+]i during the Ca2+ repletion. Moreover, taurine treated cells recovered their Ca2+-transients and beating pattern earlier than non-treated cells. Finally morphological abnormalities commonly associated with calcium overload were attenuated by taurine treatment.  相似文献   

16.
Excessive glucose concentrations foster glycation and thus premature aging of erythrocytes. The present study explored whether glycation-induced erythrocyte aging is paralleled by features of suicidal erythrocyte death or eryptosis, which is characterized by cell membrane scrambling with subsequent phosphatidylserine exposure at the cell surface and cell shrinkage. Both are triggered by increases of cytosolic Ca2+ concentration ([Ca2+]i), which may result from activation of Ca2+ permeable cation channels. Glycation was accomplished by exposure to high glucose concentrations (40 and 100 mM), phosphatidylserine exposure estimated from annexin binding, cell shrinkage from decrease of forward scatter, and [Ca2+]i from Fluo3-fluorescence in analysis via fluorescence-activated cell sorter. Cation channel activity was determined by means of whole-cell patch clamp. Glycation of total membrane proteins, immunoprecipitated TRPC3/6/7, and immunoprecipitated L-type Ca2+ channel proteins was estimated by Western blot testing with polyclonal antibodies used against advanced glycation end products. A 30–48-h exposure of the cells to 40 or 100 mM glucose in Ringer solution (at 37°C) significantly increased glycation of membrane proteins, hemoglobin (HbA1c), TRPC3/6/7, and L-type Ca2+ channel proteins, enhanced amiloride-sensitive, voltage-independent cation conductance, [Ca2+]i, and phosphatidylserine exposure, and led to significant cell shrinkage. Ca2+ removal and addition of Ca2+ chelator EGTA prevented the glycation-induced phosphatidylserine exposure and cell shrinkage after glycation. Glycation-induced erythrocyte aging leads to eryptosis, an effect requiring Ca2+ entry from extracellular space.  相似文献   

17.
Stomatal closure in response to abscisic acid depends on mechanisms that are mediated by intracellular [Ca2+] ([Ca2+]i), and also on mechanisms that are independent of [Ca2+]i in guard cells. In this study, we addressed three important questions with respect to these two predicted pathways in Arabidopsis thaliana. (i) How large is the relative abscisic acid (ABA)‐induced stomatal closure response in the [Ca2+]i‐elevation‐independent pathway? (ii) How do ABA‐insensitive mutants affect the [Ca2+]i‐elevation‐independent pathway? (iii) Does ABA enhance (prime) the Ca2+ sensitivity of anion and inward‐rectifying K+ channel regulation? We monitored stomatal responses to ABA while experimentally inhibiting [Ca2+]i elevations and clamping [Ca2+]i to resting levels. The absence of [Ca2+]i elevations was confirmed by ratiometric [Ca2+]i imaging experiments. ABA‐induced stomatal closure in the absence of [Ca2+]i elevations above the physiological resting [Ca2+]i showed only approximately 30% of the normal stomatal closure response, and was greatly slowed compared to the response in the presence of [Ca2+]i elevations. The ABA‐insensitive mutants ost1‐2, abi2‐1 and gca2 showed partial stomatal closure responses that correlate with [Ca2+]i‐dependent ABA signaling. Interestingly, patch‐clamp experiments showed that exposure of guard cells to ABA greatly enhances the ability of cytosolic Ca2+ to activate S‐type anion channels and down‐regulate inward‐rectifying K+ channels, providing strong evidence for a Ca2+ sensitivity priming hypothesis. The present study demonstrates and quantifies an attenuated and slowed ABA response when [Ca2+]i elevations are directly inhibited in guard cells. A minimal model is discussed, in which ABA enhances (primes) the [Ca2+]i sensitivity of stomatal closure mechanisms.  相似文献   

18.
Aspartame is a widely used artificial sweetener added to many soft beverages and its usage is increasing in health-conscious societies. Upon ingestion, this artificial sweetener produces methanol as a metabolite. In order to examine the possibility of aspartame toxicity, the effects of methanol and its metabolites (formaldehyde and formate) on dissociated rat thymocytes were studied by flow cytometry. While methanol and formate did not affect cell viability in the physiological pH range, formaldehyde at 1–3 mmol/L started to induce cell death. Further increase in formaldehyde concentration produced a dose-dependent decrease in cell viability. Formaldehyde at 1 mmol/L or more greatly reduced cellular content of glutathione, possibly increasing cell vulnerability to oxidative stress. Furthermore, formaldehyde at 3 mmol/L or more significantly increased intracellular concentration of Ca2+([Ca2+]i) in a dose-dependent manner. Threshold concentrations of formaldehyde, a metabolite of methanol, that affected the [Ca2+]iand cellular glutathione content were slightly higher than the blood concentrations of methanol previously reported in subjects administered abuse doses of aspartame. It is suggested that aspartame at abuse doses is harmless to humans. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Abstract

Protriptyline, a tricyclic anti-depressant, is used primarily to treat the combination of symptoms of anxiety and depression. However, the effect of protriptyline on prostate caner is unknown. This study examined whether the anti-depressant protriptyline altered Ca2+ movement and cell viability in PC3 human prostate cancer cells. The Ca2+-sensitive fluorescent dye fura-2 was used to measure [Ca2+]i. Protriptyline evoked [Ca2+]i rises concentration-dependently. The response was reduced by removing extracellular Ca2+. Protriptyline-evoked Ca2+ entry was inhibited by store-operated channel inhibitors (nifedipine, econazole and SKF96365), protein kinase C activator (phorbol 12-myristate 13 acetate, PMA) and protein kinase C inhibitor (GF109203X). Treatment with the endoplasmic reticulum Ca2+ pump inhibitor 2,5-di-tert-butylhydr-oquinone (BHQ) in Ca2+-free medium inhibited 60% of protriptyline-evoked [Ca2+]i rises. Conversely, treatment with protriptyline abolished BHQ-evoked [Ca2+]i rises. Inhibition of phospholipase C with U73122 suppressed 50% of protriptyline-evoked [Ca2+]i rises. At concentrations of 50–70?µM, protriptyline decreased cell viability in a concentration-dependent manner; which were not reversed by chelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM). Collectively, in PC3 cells, protriptyline evoked [Ca2+]i rises by inducing phospholipase C-associated Ca2+ release from the endoplasmic reticulum and other stores, and Ca2+ influx via protein kinase C-sensitive store-operated Ca2+ channels. Protriptyline caused cell death that was independent of [Ca2+]i rises.  相似文献   

20.
The effect of celecoxib on renal tubular cells is largely unexplored. In Madin Darby canine kidney (MDCK) cells, the effect of celecoxib on intracellular Ca2 + concentration ([Ca2 +]i) and proliferation was examined by using the Ca2 +-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium, respectively. Celecoxib (≥1 μ M) caused an increase of [Ca2 +]i in a concentration-dependent manner. Celecoxib-induced [Ca2 +]i increase was partly reduced by removal of extracellular Ca2 +. Celecoxib-induced Ca2 + influx was independently suggested by Mn2 + influx-induced fura-2 fluorescence quench. In Ca2 +-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2 +-ATPase, caused a monophasic [Ca2 +]i increase, after which celecoxib only induced a tiny [Ca2 +]iincrease; conversely, pretreatment with celecoxib completely inhibited thapsigargin-induced [Ca2 +]i increases. U73122, an inhibitor of phospholipase C, abolished ATP (but not celecoxib)-induced [Ca2 +]i increases. Overnight incubation with 1 or 10 μ M celecoxib decreased cell viability by 80% and 100%, respectively. These data indicate that celecoxib evokes a [Ca2 +]i increase in renal tubular cells by stimulating both extracellular Ca2 + influx and intracellular Ca2 + release and is highly toxic to renal tubular cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号