首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
杨爱馥  苏乔  安利佳 《遗传》2009,31(1):95-100
转基因植物中的载体骨架序列和选择标记基因是引起生物安全性争论的根本原因, 最直接、最有效的解决方法是在转化过程中不使用载体骨架序列和选择标记基因。本研究建立并优化了玉米子房滴注转化法, 其操作要点是将DNA转化溶液直接滴加在完全去除花柱的子房上。利用子房滴注法将无载体骨架序列和选择标记的线性GFP基因表达框转化玉米。PCR结果表明: 适合子房滴注法转化的玉米品种为9818, 最佳转化时间为授粉后18~20 h, 在此条件下得到最高的PCR阳性率, 为3.01%; Southern blotting结果表明外源基因的整合方式简单(1~2条杂交带); RT-PCR结果表明转基因植株中GFP基因能够在RNA水平上正常表达; 在转基因植株的根和幼胚中观察到GFP表达。  相似文献   

2.
基于BAC重组酶系统构建莱航鸡多位点基因打靶载体的研究   总被引:2,自引:0,他引:2  
以莱航鸡重复的rDNA基因间的间隔序列为靶位点,利用BAC重组酶系统构建含人干扰素基因的多位点基因打靶载体,为建立莱航鸡多位点基因打靶技术获得关键材料。首先构建BAC-TDN筛选载体,然后构建pYLVS-GID表达载体。将BAC-TDN筛选载体和pYLVS-GID表达载体共转化至大肠杆菌NS3529中,通过其Cre重组酶的作用形成BAC-TDN-VS-GID质粒,采用归位内切酶I-SceⅠ切除pYLVS质粒骨架,利用接头LS使之环化,构建成莱航鸡大容量多位点基因打靶载体BAC-TDN-GID。每次克隆均经酶切或PCR、测序等鉴定DNA片段的插入及插入方向。以该载体为材料的多位点基因打靶技术将提高基因定点整合效率,解决外源基因不能稳定表达、安全性等部分问题,突破了DNA重复序列不能作为外源基因整合靶位点的禁区。  相似文献   

3.
原位杂交技术 ( in situ hybridization,ISH)是基因定位的主要技术之一。近来 ,随着植物细胞染色体制片技术的发展 ,以及酶联放大检测系统的采用 ,在植物中已有低拷贝和单拷贝甚至小于 1 kb的 DNA序列定位的成功报道 [1 ,2 ]。染色体原位杂交技术不仅可以用于基因的物理作图 ,而且可以用来对转基因植物中的外源基因进行染色体定位 [3 5] 。研究表明 ,外源目的基因在转基因植物中的表达与整合位点有关 [6] 。因而 ,进行外源基因在转基因植物染色体上的定位以及研究外源基因的整合位点与表达之间的关系 ,对于开发和利用转基因植物具有重要…  相似文献   

4.
以莱航鸡重复的rDNA基因间的间隔序列为靶位点,利用BAC重组酶系统构建含人干扰素基因的多位点基因打靶载体,为建立莱航鸡多位点基因打靶技术获得关键材料。首先构建BAC-TDN筛选载体,然后构建pYLVS-GID表达载体。将BAC—TDN筛选我体和pYLVS-GID表达我体共转化至大肠杆菌NS3529中,通过其Cre重组酶的作用形成BAC-TDN-VS-GID质粒,采用归位内切酶I-SeeⅠ切除pYLVS质粒骨架,利用接头塔使之环化,构建成莱航鸡大容量多位点基因打靶载体BAC-TDN—GID。每次克隆均经酶切或PCR、测序等鉴定DNA片段的插入及插入方向。以该载体为材料的多位点基因打靶技术将提高基因定点整合效率,解决外源基因不能稳定表达、安全性等部分问题,突破了DNA重复序列不能作为外源基因整合靶位点的禁区。  相似文献   

5.
以莱航鸡重复的rDNA 基因间的间隔序列为靶位点,利用BAC重组酶系统构建含人干扰素基因的多位点基因打靶载体,为建立莱航鸡多位点基因打靶技术获得关键材料。首先构建BAC-TDN筛选载体,然后构建pYLVS-GID表达载体。将BAC-TDN筛选载体和pYLVS-GID表达载体共转化至大肠杆菌NS3529中,通过其Cre重组酶的作用形成BAC-TDN-VS-GID质粒,采用归位内切酶I-SceⅠ切除pYLVS质粒骨架,利用接头LS使之环化,构建成莱航鸡大容量多位点基因打靶载体BAC-TDN-GID。每次克隆均经酶切或PCR、测序等鉴定DNA片段的插入及插入方向。以该载体为材料的多位点基因打靶技术将提高基因定点整合效率,解决外源基因不能稳定表达、安全性等部分问题,突破了DNA重复序列不能作为外源基因整合靶位点的禁区。  相似文献   

6.
转基因水稻T—DNA侧翼序列的扩增与分析   总被引:19,自引:2,他引:17  
利用现有的转抗白叶枯病基因Xa21的水稻材料,通过TAIL-PCR技术扩增出携带Xa21基因的T-DNA的侧翼序列,对24个有效扩增片段的序列分析结果表明,其中14个侧翼序列是水稻DNA,9个含载体主干序列,1个是外源基因Xa21片段,14个T-DNA侧翼的水稻DNA序列与直接转化法外源基因整合位点的基因组序列具有不同的特点,这些T-DNA在水稻染色体上整合后其两端序列的特点类似于在转基因双子叶植物中观察到的现象,在含主干序列的侧翼序列(37.5%,9/24),中,载体主干序列是以不同的类型出现的。  相似文献   

7.
染色体整合表达可获得稳定遗传的基因工程菌,是工业酿酒酵母育种的重要手段。pAUR135整合载体是抗生素标记基因可循环使用的载体,添加特定的同源臂后可构建在酵母染色体上稳定遗传的菌株。目前对酵母菌的分子育种常需要对多个基因进行过表达,利用pAUR135载体可将不同基因分别整合在不同染色体或相同染色体的不同位点,这种组合整合表达方法可对不同基因的表达强度比例进行调节,构建表型优化的工业酿酒酵母菌株。本研究以木糖代谢途径基因为例,构建了3个pAUR135整合载体,将3个木糖代谢基因依次整合到工业酿酒酵母染色体的不同位点,获得了染色体组合整合表达的代谢工程菌株。与将这3个基因整合在同一个位点的对照重组菌株相比,染色体组合整合的重组菌株木糖利用率提高了24.4%–35.5%。多基因染色体组合整合方法从新的角度对工业酵母进行代谢工程改造,所获得的工程菌株不带有任何外来基因和选择标记,可以保持性状的稳定,是工业酿酒酵母分子育种的新方法。  相似文献   

8.
利用DNA或RNA植物病毒作载体表达外源蛋白是近几年发展较快的一种新的遗传转化方式,它具有以下几个优点:表达量大,表达速度快,易于进行基因操作和接种以及适用对象广泛。已发展的四种载体构建策略包括:基因取代,基因插入,融合抗原和基因互补。植物病毒表达载体可以用于基因的重组、病毒的移动和基因功能的检测等基础性研究,也可用于商业上表达多种药用蛋白或疫苗。植物病毒表达载体的稳定性主要取决于存在同源序列而引起的基因重组。本文还对病毒载体的生物安全性进行了讨论。  相似文献   

9.
人工microRNA干扰拟南芥AtCDKC;1和AtCDKC;2基因表达的初步研究   总被引:1,自引:0,他引:1  
以来源于拟南芥的microRNA序列为骨架,构建抑制AtCDKC;1和AtCDKC;2基因的人工microRNAs载体,研究其对目的基因表达的抑制效果。选择AtCDKCs基因的特异性序列,通过重叠PCR的方法改造拟南芥microRNA164a骨架序列,连接到双元载体pPZPY122,在农杆菌介导下转化拟南芥。RT-PCR分析表明,人工microRNA能够显著抑制目的基因的表达,获得了抑制效果明显的转基因植株,并且对AtCDKCs在拟南芥生长发育中的作用进行了初步的研究。  相似文献   

10.
玉米是我国第一大作物,在保障我国粮食安全中发挥重要作用。通过转基因技术培育具有抗病虫等性状的转基因玉米新品种,可有效减少产量损失。培育的转基因玉米需要鉴定外源基因整合位点,为转基因玉米的安全性评价提供重要依据。以一个抗虫转基因玉米事件IE34为材料,采用热不对称PCR(TAIL-PCR)和遗传定位方法,鉴定外源基因整合位点及旁侧序列。通过TAIL-PCR得到一段长度为776 bp的玉米基因组序列。分别在旁侧序列和外源基因上游序列设计特异性引物,建立了转基因玉米事件特异性的PCR鉴定方法。将旁侧序列在MaizeGDB中进行比对分析,发现此序列是重复序列而且存在于多条染色体上。构建转基因玉米IE34与自交系B73的F2代遗传分离群体,通过BSR-Seq方法确定外源基因整合在玉米第5染色体短臂2.32-2.70Mb区间内。通过精细定位将外源基因整合位点缩小在第5染色体2.35-2.61 Mb约260 kb的区间内。本研究结果表明,对于整合位点旁侧序列复杂的转基因事件,TAIL-PCR结合遗传定位方法能够有效鉴定外源基因的整合位点。  相似文献   

11.
During the process of crown gall tumorigenesis, Agrobacterium tumefaciens transfers part of the tumor-inducing (Ti) plasmid, the T-DNA, to a plant cell where it eventually becomes stably integrated into the plant genome. Directly repeated DNA sequences, called T-DNA borders, define the left and the right ends of the T-DNA. The T-DNA can be physically separated from the remainder of the Ti-plasmid, creating a 'binary vector' system; this system is frequently used to generate transgenic plants. Scientists initially thought that only those sequences located between T-DNA left and right borders transferred to the plant. More recently, however, several reports have appeared describing the integration of the non-T-DNA binary vector 'backbone' sequences into the genome of transgenic plants. In order to investigate this phenomenon, we constructed T-DNA binary vectors containing a nos-nptll gene within the T-DNA and a mas2'-gusA (β-glucuronidase) gene outside the T-DNA borders. We regenerated kanamycin-resistant transgenic tobacco plants and analyzed these plants for the expression of the vector-localized gusA gene and for the presence of binary vector backbone sequences. Approximately one-fifth of the plants expressed detectable GUS activity. PCR analysis indicated that approximately 75% of the plants contained the gusA gene. Southern blot analysis indicated that the vector backbone sequences could integrate into the tobacco genome linked either to the left or to the right T-DNA border. The vector backbone sequences could also integrate into the plant genome independently of (unlinked to) the T-DNA. Although we could readily detect T-strands containing the T-DNA within the bacterium, we could not detect T-strands containing only the vector backbone sequences or these vector sequences linked to the T-DNA.  相似文献   

12.
Genetic transformation with resistance (R) genes is expected to enhance resistance durability against pathogens, especially for potato, a vegetatively propagated crop with tetrasomic inheritance and a long-term breeding program. In this study, 128 potato transformants were analysed for the presence of vector T-DNA genes, borders and backbone sequences. They were harvested after transformation using a construct containing neomycin phosphotransferase II (nptII) and three R genes against potato late blight (Phytophthora infestans). Our analysis revealed that 45 % of the R gene-containing transformants possessed a low T-DNA copy number, without the integration of vector backbone and borders. The integration of vector backbone sequences was characterized using eight genes, and backbone gene tetA was selected for the early prediction of plants with backbone sequence integration. Three transformants, two plants harbouring one T-DNA copy and one plant harbouring three T-DNA copies, were crossed with susceptible cv. Katahdin. Based on our results, we conclude that all four T-DNA genes were inherited as one cluster and segregated in a Mendelian fashion. The three T-DNA inserts from the transformant harbouring three T-DNA copies were statistically proven to be un-linked and inherited into the offspring plants independently. All of the R genes were functionally expressed in the offspring plants as in their parental transformants. This functional gene stacking has important implications towards achieving more durable resistance against potato late blight.  相似文献   

13.
The review presents experimental data on the integration in the plant nuclear genome of vector sequences during Agrobacterium-mediated transformation. Main attention is given to the frequency and mechanisms of this event among transgenic plants. The factors influencing the frequency of this event, as well as the ways of developing special constructs for elimination of vector backbone sequences as undesirable from the point of view of commercial use of genetically modified plants, are considered.  相似文献   

14.
Transgenic Arabidopsis and tobacco plants (125) derived from seven Agrobacterium-mediated transformation experiments were screened by polymerase chain reaction and DNA gel blot analysis for the presence of vector `backbone' sequences. The percentage of plants with vector DNA not belonging to the T-DNA varied between 20% and 50%. Neither the plant species, the explant type used for transformation, the replicon type nor the selection seem to have a major influence on the frequency of vector transfer. Only the border repeat sequence context could have an effect because T-DNA vector junctions were found in more than 50% of the plants of three different transformation series in which T-DNAs with octopine borders without inner border regions were used. Strikingly, many transgenic plants contain vector backbone sequences linked to the left T-DNA border as well as vector junctions with the right T-DNA border. DNA gel blots indicate that in most of these plants the complete vector sequence is integrated. We assume that integration into the plant genome of complete vector backbone sequences could be the result of a conjugative transfer initiated at the right border and subsequent continued copying at the left and right borders, called read-through. This model would imply that the left border is not frequently recognized as an initiation site for DNA transfer and that the right border is not efficiently recognized as a termination site for DNA transfer.  相似文献   

15.
Genomic integration of transferred T-DNA is traditionally analyzed by Southern hybridization; however, these analyses often do not provide sufficient information pertaining to the transformation event. Analysis of the junction sequences spanning the region between the T-DNA borders and plant genomic DNA, give a clear demonstration of genomic integration. The procedures available for border junction analysis can be problematic, therefore a simplified method was developed for plants transformed by Agrobacterium tumefaciens harboring the binary vector with pBI121 backbone.  相似文献   

16.
We report a large-scale study on the frequency of transgene and T-DNA backbone integration following Agrobacterium-mediated transformation of immature barley embryos. One hundred and ninety-one plant lines were regenerated after hygromycin selection and visual selection for GFP expression at the callus stage. Southern blotting performed on a subset of 53 lines that were PCR positive for the GFP gene documented the integration of the GFP gene in 27 of the lines. Twenty-three of these lines expressed GFP in T1 plantlets. Southern blotting with a vector backbone probe revealed that 13 of the 27 lines possessed one or more vector backbone fragments illustrating the regular occurrence of vector backbone integration following Agrobacterium infection of barley immature embryos.  相似文献   

17.
In genetically transformed plants, transgene silencing has been correlated with multiple and complex insertions of foreign DNA, e.g. T-DNA and vector backbone sequences. Occasionally, single-copy transgenes also suffer transgene silencing. We have compared integration patterns and T-DNA/plant DNA junctions in a collection of 37 single-copy T-DNA-transformed Arabidopsis lines, of which 13 displayed silencing. Vector sequences were found integrated in five lines, but only one of these displayed silencing. Truncated T-DNA copies, positioned in inverse orientation to an intact T-DNA copy, were discovered in three lines. The whole nptII gene with pnos promoter was present in the truncated copy of one such line in which heavy silencing has been observed. In the two other lines no silencing has been observed over five generations. Thus, vector sequences and short additional T-DNA sequences are not sufficient or necessary to induce transgene silencing. DNA methylation of selected restriction endonuclease sites could not be correlated with silencing. Our collection of T-DNA/plant DNA junctions has also been used to evaluate current models of T-DNA integration. Data for some of our lines are compatible with T-DNA integration in double-strand breaks, while for others initial invasion of plant DNA by the left or by the right T-DNA end seem important.  相似文献   

18.
We assessed the effect of four different virulence (vir) gene combinations on plant transformation efficiency and transgene behaviour in rice using the pGreen/pSoup dual binary vector system. Transformation experiments were conducted using a pGreen vector containing the bar and gusA expression units with, or without, the virG542, virGN54D, virGwt or the virG/B/C genes added to the backbone. Additonal vir gene(s) significantly altered plant transformation efficiency and the integration of vector backbone sequences. However, no differences in transgene copy number, percentage of expressing lines and expression levels could be detected. Addition of virGwt was the most beneficial, doubling the overall performance of the pGreen/pSoup vector system based on transformation frequency, absence of backbone sequence integration and expression of unselected transgenes. In 39 of the plant lines, the additional vir genes were integrated into the rice genome. The contribution of super dual binary pGreen/pSoup vectors to the development of efficient rice transformation systems and to the production of plants free of selectable marker genes are discussed.  相似文献   

19.
A system for the genetic transformation of rye by co-cultivation with Agrobacterium tumefaciens is described. A total of 45 independent transgenic plants were regenerated with a transformation efficiency of 1 to % of the inoculated explants. The co-cultivation of Agrobacterium-strain AGL0, harboring plasmid pJFnptII and rye im-mature embryos in liquid medium allowed a high throughput and facilitated washing of the cultures to avoid Agrobacterium overgrowth. Transgenic plants were phenotypically normal and fully fertile, which might be aconsequence of the short time in tissue culture. The selection with paromomycin exclusively during the regen-eration allowed the efficient recovery of transgenic events without interfering with somatic embryogenesis. Southern blot analysis confirmed the independent nature of the analyzed plants and indicated single copy inserts in more than 50% of them. Segregation analysis confirmed single locus integration and stable transgene expression in most of the lines, while one line with multiple locus integration was also observed. The analysis of T-DNA:: plant DNA boundary sequences revealed examples of exclusion of vector sequences, deletion of a few bases of the T-DNA or insertion of up to 29 bases of the vector backbone. This stresses the importance of detailed analysis of the inserted transgenes in order to identify events with the desired integration profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号