首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A doubled haploid population derived from anther culture of ZYQ8/JX17 F1, a typical indica and japonica hybrid, was used in this study. Morphological index and its related taxonomic traits were investigated in 121 DH lines. The quantitative trait loci (QTLs) for morphological index and its related taxonomic traits were analyzed. Two major QTLs for leaf hairiness, three QTLs for length/width of grain, one QTL for color of hull when heading, one QTL for hairiness of hull, two QTLs for length of the first and second panicle internode, and one major QTL and two QTLs for phenol reaction were detected. Four QTLs for morphological index were also identified on chromosomes 1, 3, 4 and 6, respectively, three of which on chromosomes 1, 3 and 6, respectively, were found to be located in the same chromosome regions where some QTLs for the related taxonomic traits were located.  相似文献   

2.
Yield-related QTLs and Their Applications in Rice Genetic Improvement   总被引:1,自引:0,他引:1  
Grain yield is one of the most important indexes in rice breeding,which is governed by quantitative trait loci (QTLs).Different map-ping populations have been used to explore the QTLs controlling yield related traits.Primary populations such as F 2 and recombi-nant inbred line populations have been widely used to discover QTLs in rice genome-wide,with hundreds of yield-related QTLs detected.Advanced populations such as near isogenic lines (NILs) are efficient to further fine-map and clone target QTLs.NILs for primarily identified QTLs have been proposed and confirmed to be the ideal population for map-based cloning.To date,20 QTLs directly affecting rice grain yield and its components have been cloned with NIL-F 2 populations,and 14 new grain yield QTLs have been validated in the NILs.The molecular mechanisms of a continuously increasing number of genes are being unveiled,which aids in the understanding of the formation of grain yield.Favorable alleles for rice breeding have been ’mined’ from natural cultivars and wild rice by association analysis of known functional genes with target trait performance.Reasonable combination of favorable alleles has the potential to increase grain yield via use of functional marker assisted selection.  相似文献   

3.
In present study, Fe, Zn, Mn, Cu, Ca, Mg, P and K contents of 85 introgression lines (ILs) derived from a cross between an elite indica cultivar Teqing and the wild rice (Oryza rufipogon) were measured by inductively coupled argon plasma (ICAP) spectrometry. Substantial variation was observed for all traits and most of the mineral elements were significantly positive correlated or independent except for Fe with Cu. A total of 31 putative quantitative trait loci (QTLs) were detected for these eight mineral elements by single point analysis. Wild rice (O. rufipogon) contributed favorable alleles for most of the QTLs (26 QTLs), and chromosomes 1,9 and 12 exhibited 14 QTLs (45%) for these traits. One major effect of QTL for zinc content accounted for the largest proportion of phenotypic variation (11%-19%) was detected near the simple sequence repeats marker RM152 on chromosome 8. The co-locations of QTLs for some mineral elements observed in this mapping population suggested the relationship was at a molecular level among these traits and could be helpful for simultaneous improvement of these traits in rice grain by marker assisted selection.  相似文献   

4.
Improving grain quality, which is composed primarily of the appearance of the grain and its cooking and milling attributes, is a major objective of many rice-producing areas in China. In the present study, we conducted a marker-based genetic analysis of the appearance and milling quality of rice (Oryza sativa L.) grains using a doubled-haploid population derived from a cross between the indica inbred Zhenshan 97 strain and the japonica inbred Wuyujing 2 strain. Quantitative trait locus (QTL) analysis using a mixed linear model approach revealed that the traits investigated were affected by one to seven QTLs that individually explained 4.0%-30.7% of the phenotypic variation. Cumulatively, the QTL for each trait explained from 12.9% to 61.4% of the phenotypic variation. Some QTLs tended to have a pleiotropic or location-linked association as a cause of the observed phenotypic correlations between different traits. Improvement of the characteristics of grain appearance and grain weight, as well as an improvement in the milling quality of rice grains, would be expected by a recombination of different QTLs using marker-assisted selection.  相似文献   

5.
To reveal the genetic basis of potassium use efficiency(KUE) in rapeseed, root morphology(RM), biomass and KUE-related traits were measured in a recombinant inbred line population with 175 F7 lines that were subjected to high-potassium(HK) and low-potassium(LK) treatments by hydroponics. A total of 109 significant QTLs were identified to be associated with the examined traits. Sixty-one of these QTLs were integrated into nine stable QTLs. The higher heritability for RM and biomass traits and lower heritability for KUE-related traits, as well as nine stable QTLs for RM traits and only two for KUE-related traits,suggested that regulating RM traits would be more effective than selecting KUE traits directly to improve KUE by markerassisted selection. Furthermore, the integration of stable QTLs identified in the HK, LK, high-nitrogen(HN) and low-nitrogen(LN) conditions gave 10 QTL clusters. Seven of these clusters were classified into major QTLs that explained 7.4%–23.7% of the total phenotypic variation. Five of the major QTL clusters were detected under all of the treated conditions, and four clusters were specifically detected under the LK and LN conditions. These common and specific QTL clusters may be useful for the simultaneous improvement of multiple traits by marker-assisted selection.  相似文献   

6.
Post-anthesis photoassimilation is very important for wheat (Triticum aestivum L.) grain filling. The aim of the present study was to map quantitative trait loci (QTL) for post-anthesis dry matter accumulation (DMA). A set of 120 doubled haploid (DH) lines, derived from winter wheat varieties Hanxuan 10 and Lumai 14, was grown under field conditions in two consecutive growing seasons during 2002-2004 in Beijing. Post-anthesis DMA per culm and related traits, including flag leaf greenness (FLG) and flag leaf weight (FLW; dry weight per flag leaf) at flowering, and grain weight per ear (GWE) were investigated. All traits segregated continuously in the DH population in both trials. The DMA was significantly and positively correlated with GWE, with the correlation coefficients being 0.79 and 0.66 in the 2002-2003 and 2003-2004 growing seasons (both P〈0.01), suggesting the importance of DMA in grain filling. Further correlation analysis showed that FLW was more closely correlated with DMA and GWE than FLG in both growing seasons, indicating that FLW was more important than FLG in influencing DMA and GWE. In total, 30 QTLs for these four traits were mapped and distributed on 10 chromosomes. Phenotypic variations explained by an individual QTL were in the range 5.8%-21.3%, 5.9%-17.2%, 5.1%-18.1%, and 5.6%-16.2% for FLG, FLW, DMA, and GWE, respectively. Eight QTLs for DMA were detected, of which four (on chromosome arms 2AS, 4BL, 5AS, and 7AS) were linked with QTLs for GWE; two (on chromosome arms 5BL and 7BL) coincided with QTLs for FLW. These results may provide useful information for developing marker-assisted selection for the improvement of DMA.  相似文献   

7.
A thorough understanding of the quantitative trait loci(QTLs)that underlie agronomically important traits in crops would greatly increase agricultural productivity.Although advances have been made in QTL cloning,the majority of QTLs remain unknown because of their low heritability and minor contributions to phenotypic performance.Here we summarize the key advantages and disadvantages of current QTL fine-mapping methodologies,and then introduce a sequential QTL fine-mapping strategy based on both genotypes and phenotypes of progeny derived from recombinants.With this mapping strategy,experimental errors could be dramatically diminished so as to reveal the authentic genetic effect of target QTLs.The number of progeny required to detect QTLs atvarious R~2 values was calculated,and the backcross generation suitable to start QTL fine-mapping was also estimated.This mapping strategy has proved to be very powerful in narrowing down QTL regions,particularly minor-effect QTLs,as revealed by fine-mapping of various resistance QTLs in maize.Application of this sequential QTL mapping strategy should accelerate cloning of agronomically important QTLs,which is currently a substantial challenge in crops.  相似文献   

8.
Verticillium wilt is one of the most serious constraints to cotton production in almost all of the cotton-growing countries. In this study, "XinLuZaol" (XLZl), a susceptible cultivar Gossypium hirsutum L. and "Hai7124" (H7124), a resistant line G. barbadense, and their F2:3 families were used to map and study the disease index induced by verticillium wilt. A total of 430 SSR loci were mapped into 41 linkage groups; the map spanned 3 745.9 cM and the average distance between adjacent loci was 8.71 cM. Four and five quantitative trait loci (QTLs) were detected based on the disease index investigated on July 22 and August 24 in 2004, respectively. These nine QTLs explained 10.63-28.83% of the phenotypic variance, six of them were located on the D sub-genome. Two QTLs located in the same marker intervals may partly explain the significant correlation of the two traits. QTLs explaining large phenotypic variation were identified in this study, which may be quite useful in cotton anti-disease breeding.  相似文献   

9.
10.
Epistasis is a commonly observed genetic phenomenon and an important source of variation of complex traits,which could maintain additive variance and therefore assure the long-term genetic gain in breeding.Inclusive composite interval mapping(ICIM) is able to identify epistatic quantitative trait loci(QTLs) no matter whether the two interacting QTLs have any additive effects.In this article,we conducted a simulation study to evaluate detection power and false discovery rate(FDR) of ICIM epistatic mapping,by considering F2 and doubled haploid(DH) populations,different F2 segregation ratios and population sizes.Results indicated that estimations of QTL locations and effects were unbiased,and the detection power of epistatic mapping was largely affected by population size,heritability of epistasis,and the amount and distribution of genetic effects.When the same likelihood of odd(LOD) threshold was used,detection power of QTL was higher in F2 population than power in DH population;meanwhile FDR in F2 was also higher than that in DH.The increase of marker density from 10 cM to 5 cM led to similar detection power but higher FDR.In simulated populations,ICIM achieved better mapping results than multiple interval mapping(MIM) in estimation of QTL positions and effect.At the end,we gave epistatic mapping results of ICIM in one actual population in rice(Oryza sativa L.).  相似文献   

11.
水稻外观品质的数量性状基因位点分析   总被引:27,自引:1,他引:26  
利用由98个家系组成的Nipponbare(粳)/Kasalath(秒)∥Nipponbare回交重组自交系(backcross inbred lines,BILs)群体(BC1F9)及其分子连锁图谱,采用复合区间作图的方法,在2个不同年份对粒长、粒宽、粒形、垩白率、垩白大小、垩白度和透明度等7个稻米外观品质性状的数量性状基因位点(Quantiative trait loci,QTL)进行了定位分析。共定位到33个四QTLs,单个性状QTL数目在4-7个之间,以垩白率最多,为7个;粒长和垩白大小次之,为5个;其他性状均为4个,表明该组合外观品质是由多基因控制的数量性状。单个QTL对性状变异解释率粒长为6.2%-15.2%,粒宽为8.3%-32.5%,长宽比为6.8%-19.8%,垩白率为6.4%-28.5%,垩白大小为6.1%-16.9%,垩白度为9.3%-17.2%,透明度为5.6%-25.2%.QTL在染色体上成集中分布的特点,第3染色体C1488-C563、第5染色体R830-R3166和R1436-R2289、第6染色体R2147-R2171均有3个以上的QTLs分布。比较2年的检测结果表明,外观品质性状的QTL定位都受环境影响,但不同性状受影响的程度差异很大。粒长和粒形的QTL定位受环境影响很小,垩白率、垩白大小和垩白度的QTL定位受环境影响很大。  相似文献   

12.

Background

The three-dimensional shape of grain, measured as grain length, width, and thickness (GL, GW, and GT), is one of the most important components of grain appearance in rice. Determining the genetic basis of variations in grain shape could facilitate efficient improvements in grain appearance. In this study, an F7:8 recombinant inbred line population (RIL) derived from a cross between indica and japonica cultivars (Nanyangzhan and Chuan7) contrasting in grain size was used for quantitative trait locus (QTL) mapping. A genetic linkage map was constructed with 164 simple sequence repeat (SSR) markers. The major aim of this study was to detect a QTL for grain shape and to fine map a minor QTL, qGL7.

Results

Four QTLs for GL were detected on chromosomes 3 and 7, and 10 QTLs for GW and 9 QTLs for GT were identified on chromosomes 2, 3, 5, 7, 9 and 10, respectively. A total of 28 QTLs were identified, of which several are reported for the first time; four major QTLs and six minor QTLs for grain shape were also commonly detected in both years. The minor QTL, qGL7, exhibited pleiotropic effects on GL, GW, GT, 1000-grain weight (TGW), and spikelets per panicle (SPP) and was further validated in a near isogenic F2 population (NIL-F2). Finally, qGL7 was narrowed down to an interval between InDel marker RID711 and SSR marker RM6389, covering a 258-kb region in the Nipponbare genome, and cosegregated with InDel markers RID710 and RID76.

Conclusion

Materials with very different phenotypes were used to develop mapping populations to detect QTLs because of their complex genetic background. Progeny tests proved that the minor QTL, qGL7, could display a single mendelian characteristic. Therefore, we suggested that minor QTLs for traits with high heritability could be isolated using a map-based cloning strategy in a large NIL-F2 population. In addition, combinations of different QTLs produced diverse grain shapes, which provide the ability to breed more varieties of rice to satisfy consumer preferences.  相似文献   

13.
籼稻稻米碾磨与外观品质性状的QTL定位   总被引:3,自引:0,他引:3  
梅德勇  朱玉君  樊叶杨 《遗传》2012,34(12):1591-1598
文章利用籼籼交组合特青/IRBB衍生的重组自交系群体, 在2个环境下对稻米碾磨品质和外观品质进行QTL定位。共计检测到控制稻米碾磨品质的QTL 12个和控制外观品质的QTL 18个, 包括糙米率8个、精米率2个、整精米率2个、粒长7个、粒宽5个和长宽比6个, 这些QTL分布于除第4和12染色体外的其他10条染色体上。其中, 第3染色体涵盖粒形基因GS3的区域对粒长、长宽比、糙米率和整精米率具有较大效应, 其献率分别为56.71%、42.23%、10.05%和4.91%; 第5染色体涵盖粒宽基因GW5的区域对粒宽、长宽比、糙米率和精米率具有较大效应, 表型变异贡献率分别为59.51%、36.68%、19.51%和4.56%。此外, 第6染色体涵盖直链淀粉含量基因Wx的区域对糙米率和精米率具有较小效应。GS3和GW5对糙米率和粒形具有重要作用。  相似文献   

14.
Grain size traits are critical agronomic traits which directly determine grain yield, but the genetic bases of these traits are still not well understood. In this study, a total of 154 chromosome segment substitution lines (CSSLs) population derived from a cross between a japonica variety Koshihikari and an indica variety Nona Bokra was used to investigate grain length (GL), grain width (GW), length-width ratio (LWR), grain perimeter (GP), grain area (GA), and thousand grain weight (TGW) under four environments. QTL mapping analysis of six grain size traits was performed by QTL IciMapping 4.2 with an inclusive composite interval mapping (ICIM) model. A total of 64 QTLs were identified for these traits, which mapped to chromosomes 1, 2, 3, 4, 6, 7, 8, 10, 11, and 12 and accounted for 1.6%–27.1% of the total phenotypic variations. Among these QTLs, thirty-six loci were novel and seven QTLs were identified under four environments. One locus containing the known grain size gene, qGL3/GL3.1/OsPPKL1, also have been found. Moreover, five pairs of digenic epistatic interactions were identified except for GL and GP. These findings will facilitate fine mapping of the candidate gene and QTL pyramiding to genetically improve grain yield in rice.  相似文献   

15.
稻米粒形的QTL定位及上位性和QE互作分析   总被引:1,自引:0,他引:1  
利用'广陆矮4号'×'佳辐占'水稻重组自交系构建了SSR标记的遗传图谱.联合2007年和2008年获得的两组稻米粒长(GL)、粒宽(GW)、长宽比(L/W)数据应用混合线性模型方法进行QTL定位,并作加性效应、加性×加性上位互作效应以及加性QTL、上位性QTL与环境的互作效应分析.结果显示;(1)在加性效应分析中两个群体共检测到4个控制粒长的QTL,4个控制粒宽的QTL,5个控制长宽比的QTL,贡献率分别为13.81%、15.36%和 16.29%.(2)在上位互作效应分析中两个群体共检测到2对控制粒长的互作QTL,1对控制粒宽的互作QTL,3对控制长宽比的互作QTL,贡献率分别为5.77%、2.59%和7.42%.(3)环境互作检测中,发现共有13个加性QTL和4对QTL的加性×加性上位性与环境产生了互作效应.结果表明,上位性效应和加性效应都影响稻米粒形遗传,QE互作效应也对粒形有着显著的影响.  相似文献   

16.
粳稻穗角与谷粒性状的相关性及谷粒性状遗传分析   总被引:1,自引:0,他引:1  
粳稻穗角小的品种产量高而品质差。谷粒性状与产量和品质都有关联。为培育产量与品质相协调的品种提供相关遗传信息, 测定了粳稻直立穗品种丙8979和弯曲穗品种C堡及其重组自交系349个株系的穗角和7个谷粒性状, 分析了穗角与谷粒性状之间的相关性, 并运用主基因+多基因混合遗传模型, 对7个谷粒性状进行了遗传分析。结果表明, 穗角与粒厚、长厚比和宽厚比均无显著相关, 而与千粒重、粒长、粒宽和长宽比均呈极显著正相关。7个谷粒性状均受2对主基因+多基因控制, 2对主基因的作用方式因性状而异。千粒重、粒长、长厚比和宽厚比4个性状以主基因遗传为主; 粒宽、粒厚和长宽比3个性状以多基因遗传为主。  相似文献   

17.
High-density genetic linkage maps are necessary for precisely mapping quantitative trait loci (QTLs) controlling grain shape and size in wheat. By applying the Infinium iSelect 9K SNP assay, we have constructed a high-density genetic linkage map with 269 F 8 recombinant inbred lines (RILs) developed between a Chinese cornerstone wheat breeding parental line Yanda1817 and a high-yielding line Beinong6. The map contains 2431 SNPs and 128 SSR & EST-SSR markers in a total coverage of 3213.2 cM with an average interval of 1.26 cM per marker. Eighty-eight QTLs for thousand-grain weight (TGW), grain length (GL), grain width (GW) and grain thickness (GT) were detected in nine ecological environments (Beijing, Shijiazhuang and Kaifeng) during five years between 2010–2014 by inclusive composite interval mapping (ICIM) (LOD≥2.5). Among which, 17 QTLs for TGW were mapped on chromosomes 1A, 1B, 2A, 2B, 3A, 3B, 3D, 4A, 4D, 5A, 5B and 6B with phenotypic variations ranging from 2.62% to 12.08%. Four stable QTLs for TGW could be detected in five and seven environments, respectively. Thirty-two QTLs for GL were mapped on chromosomes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6B, 7A and 7B, with phenotypic variations ranging from 2.62% to 44.39%. QGl.cau-2A.2 can be detected in all the environments with the largest phenotypic variations, indicating that it is a major and stable QTL. For GW, 12 QTLs were identified with phenotypic variations range from 3.69% to 12.30%. We found 27 QTLs for GT with phenotypic variations ranged from 2.55% to 36.42%. In particular, QTL QGt.cau-5A.1 with phenotypic variations of 6.82–23.59% was detected in all the nine environments. Moreover, pleiotropic effects were detected for several QTL loci responsible for grain shape and size that could serve as target regions for fine mapping and marker assisted selection in wheat breeding programs.  相似文献   

18.
Grain shape is an important agronomic trait in rice, which influences the yield and quality. In order to dissect the genetic basis of the large grain shape in ‘Nanyangzhan’, a recombinant inbred line (RIL) population derived from Nanyangzhan (NYZ) and Zhenshan 97B (ZS97) was used to map quantitative trait loci (QTLs) for grain length (GL), width (GW), thickness (GT), length-to-width ratio (LWR) and kilo-grain weight (KGW). A total of 53 QTLs were detected and distributed on 11 chromosomes in 2 years. Among those, QTLs for GW and GL showed a concentrated distribution on chromosome 2 and chromosome 3, respectively. NYZ, the parent with large grain shape, carried 44 alleles showing positive effects on the studied traits. In addition, the near-isogenic lines (NILs) of two novel QTLs, qGT3.1 and qGL3.4, were constructed with the background of ZS97. Results showed that NIL-qGT3.1 NYZ , the NIL carrying homozygous qGT3.1 regions from NYZ, showed an increased value of 0.12 mm in grain thickness on average as compared to NIL-qGT3.1 ZS . Similarly, NIL-qGL3.4 NYZ increased the length of each grain by 0.47 mm on average as compared to NIL-qGL3.4 ZS . Taken together, these results would be of great use in breeding rice cultivars with desirable grain shape.  相似文献   

19.
Zhang H  Zhao Q  Sun ZZ  Zhang CQ  Feng Q  Tang SZ  Liang GH  Gu MH  Han B  Liu QQ 《遗传学报》2011,38(12):603-611
Chromosome segment substitution lines (CSSLs) are useful for the precise mapping of quartitative trait loci (QTLs) and dissection of the genetic basis of complex traits.In this study,two whole-genome sequenced rice cultivars,the japonica Nipponbare and indica 9311 were used as recipient and dtonor,respectively.A population with 57 CSSLs was developed after crossing and back-crossing assisted by mo lecular rnarkers,and genotypes were identified using a high-throughput resequencing strategy,Detailed graphical genotypes of 38 lines were constructed based on resequencing data.These CSSLs had a total of 95 substituted segments derived from indica 9311,with an average of about 2.5 segments pet CSSL and eight segments per chromosome,and covered about 87.4% of the rice whole genome.A multiple linear regression QTL analysis mapped four QTLs for 1000-grain weight.The largest-effect QTL was located in a region on chromosome 5 that contained a cloned major QTL GW5/qSW5 for grain size in rice.These CSSLs with a background of Nipponbare may provide powerful tools for future whole-genome discovery and functional study of essential genes/QTLs in rice,and offer ideal materials and foundations for japonica breeding.  相似文献   

20.
Yu H  Xie W  Wang J  Xing Y  Xu C  Li X  Xiao J  Zhang Q 《PloS one》2011,6(3):e17595
Huge efforts have been invested in the last two decades to dissect the genetic bases of complex traits including yields of many crop plants, through quantitative trait locus (QTL) analyses. However, almost all the studies were based on linkage maps constructed using low-throughput molecular markers, e.g. restriction fragment length polymorphisms (RFLPs) and simple sequence repeats (SSRs), thus are mostly of low density and not able to provide precise and complete information about the numbers and locations of the genes or QTLs controlling the traits. In this study, we constructed an ultra-high density genetic map based on high quality single nucleotide polymorphisms (SNPs) from low-coverage sequences of a recombinant inbred line (RIL) population of rice, generated using new sequencing technology. The quality of the map was assessed by validating the positions of several cloned genes including GS3 and GW5/qSW5, two major QTLs for grain length and grain width respectively, and OsC1, a qualitative trait locus for pigmentation. In all the cases the loci could be precisely resolved to the bins where the genes are located, indicating high quality and accuracy of the map. The SNP map was used to perform QTL analysis for yield and three yield-component traits, number of tillers per plant, number of grains per panicle and grain weight, using data from field trials conducted over years, in comparison to QTL mapping based on RFLPs/SSRs. The SNP map detected more QTLs especially for grain weight, with precise map locations, demonstrating advantages in detecting power and resolution relative to the RFLP/SSR map. Thus this study provided an example for ultra-high density map construction using sequencing technology. Moreover, the results obtained are helpful for understanding the genetic bases of the yield traits and for fine mapping and cloning of QTLs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号