首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gluconobacter oxydans is famous for its rapid and incomplete oxidation of a wide range of sugars and sugar alcohols. The organism is known for its efficient oxidation of D-glucose to D-gluconate, which can be further oxidized to two different keto-D-gluconates, 2-keto-D-gluconate and 5-keto-D-gluconate, as well as 2,5-di-keto-D-gluconate. For this oxidation chain and for further oxidation reactions, G. oxydans possesses a high number of membrane-bound dehydrogenases. In this review, we focus on the dehydrogenases involved in D-glucose oxidation and the products formed during this process. As some of the involved dehydrogenases contain pyrroloquinoline quinone (PQQ) as a cofactor, also PQQ synthesis is reviewed. Finally, we will give an overview of further PQQ-dependent dehydrogenases and discuss their functions in G. oxydans ATCC 621H (DSM 2343).  相似文献   

2.
Gluconobacter oxydans: its biotechnological applications   总被引:1,自引:0,他引:1  
Gluconobacter oxydans is a gram-negative bacterium belonging to the family Acetobacteraceae. G. oxydans is an obligate aerobe, having a respiratory type of metabolism using oxygen as the terminal electron acceptor. Gluconobacter strains flourish in sugary niches e.g. ripe grapes, apples, dates, garden soil, baker's soil, honeybees, fruit, cider, beer, wine. Gluconobacter strains are non-pathogenic towards man and other animals but are capable of causing bacterial rot of apples and pears accompanied by various shades of browning. Several soluble and particulate polyol dehydrogenases have been described. The organism brings about the incomplete oxidation of sugars, alcohols and acids. Incomplete oxidation leads to nearly quantitative yields of the oxidation products making G. oxydans important for industrial use. Gluconobacter strains can be used industrially to produce L-sorbose from D-sorbitol; D-gluconic acid, 5-keto- and 2-ketogluconic acids from D-glucose; and dihydroxyacetone from glycerol. It is primarily known as a ketogenic bacterium due to 2,5-diketogluconic acid formation from D-glucose. Extensive fermentation studies have been performed to characterize its direct glucose oxidation, sorbitol oxidation, and glycerol oxidation. The enzymes involved have been purified and characterized, and molecular studies have been performed to understand these processes at the molecular level. Its possible application in biosensor technology has also been worked out. Several workers have explained its basic and applied aspects. In the present paper, its different biotechnological applications, basic biochemistry and molecular biology studies are reviewed.  相似文献   

3.
Pink disease of pineapple, caused by Pantoea citrea, is characterized by a dark coloration on fruit slices after autoclaving. This coloration is initiated by the oxidation of glucose to gluconate, which is followed by further oxidation of gluconate to as yet unknown chromogenic compounds. To elucidate the biochemical pathway leading to pink disease, we generated six coloration-defective mutants of P. citrea that were still able to oxidize glucose into gluconate. Three mutants were found to be affected in genes involved in the biogenesis of c-type cytochromes, which are known for their role as specific electron acceptors linked to dehydrogenase activities. Three additional mutants were affected in different genes within an operon that probably encodes a 2-ketogluconate dehydrogenase protein. These six mutants were found to be unable to oxidize gluconate or 2-ketogluconate, resulting in an inability to produce the compound 2,5-diketogluconate (2,5-DKG). Thus, the production of 2,5-DKG by P. citrea appears to be responsible for the dark color characteristic of the pink disease of pineapple.  相似文献   

4.
就维生素C微生物一步发酵方法进行了探索,构建了酮古龙酸杆菌、氧化葡萄糖酸杆菌和芽孢杆菌三菌混菌一步发酵的方法。研究发现,植物内生芽孢杆菌可以与酮古龙酸杆菌配合,促进酮古龙酸杆菌生长和产酸。在有山梨醇存在的条件下酮古龙酸杆菌及其伴生菌能够快速地生长增殖,植物内生芽孢杆菌在发酵的10h中不断消耗山梨醇。5L的发酵罐中,酮古龙酸杆菌、氧化葡萄糖酸杆菌和植物内生芽孢杆菌三菌混菌一步发酵在恒定的30℃温度,600r/min搅拌速度和1.5vvm通气条件下,补料发酵过程中醇酸质量转化率达到了81.89%,在分批发酵过程中,醇酸质量转化率达到了87.90%,进一步优化了维生素C生产工艺。  相似文献   

5.
Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans   总被引:1,自引:0,他引:1  
Gluconobacter oxydans is unsurpassed by other organisms in its ability to incompletely oxidize a great variety of carbohydrates, alcohols and related compounds. Furthermore, the organism is used for several biotechnological processes, such as vitamin C production. To further our understanding of its overall metabolism, we sequenced the complete genome of G. oxydans 621H. The chromosome consists of 2,702,173 base pairs and contains 2,432 open reading frames. In addition, five plasmids were identified that comprised 232 open reading frames. The sequence data can be used for metabolic reconstruction of the pathways leading to industrially important products derived from sugars and alcohols. Although the respiratory chain of G. oxydans was found to be rather simple, the organism contains many membrane-bound dehydrogenases that are critical for the incomplete oxidation of biotechnologically important substrates. Moreover, the genome project revealed the unique biochemistry of G. oxydans with respect to the process of incomplete oxidation.  相似文献   

6.
7.
谷胱甘肽(GSH)能有效促进酮古龙酸杆菌的生长。就GSH对氧化葡萄糖酸杆菌和酮古龙酸杆菌一步混菌发酵的作用进行了探索,为进一步阐明维生素C一步发酵过程中氧化葡萄糖酸杆菌和酮古龙酸杆菌的关系并提供发酵工艺优化的依据。研究发现,在5L的发酵罐中,外加1mg/ml的GSH对混菌的发酵有着显著的促进作用,2-酮-L-古龙酸(2-KGA)产量提高了22.8%。通过16S rDNA荧光定量PCR法测菌数,发现GSH的添加使酮古龙酸杆菌的生长提高到148%,但抑制氧化葡萄糖酸杆菌的生长,使其生物量下降到61%。运用代谢组学方法分析发现,GSH能促进酮古龙酸杆菌的磷酸戊糖、三羧酸循环、硫酸盐等代谢,同时减缓氧化葡萄糖酸杆菌对L-山梨糖的消耗,以促进整个混菌体系的发酵效率。  相似文献   

8.
Vc 二步发酵中的微生物生态调控   总被引:9,自引:0,他引:9  
研究了Vc二步混合菌发酵中氧化葡萄糖酸杆菌与巨大芽孢杆菌的生长和相互作用。结果表明,2株混合菌在发酵中可形成一种协同共生,促进2-酮基-L-古龙酸产生;二菌协同共生的过程及条件不同,促进产酸能力亦不同。环境因子影响二菌协同共生,优化环境因子可显著改善二菌协同共生效率,并提高醇到发酵转化率。  相似文献   

9.
Pantoea citrea, a member of the family Enterobacteriaceae, causes pink disease of pineapple, whose symptom is characterized by the formation of pink to brown discolorations of the infected portions of the pineapple fruit cylinder upon canning. Molecular genetic approaches were applied to elucidate the mechanism responsible for this fruit discoloration. A P. citrea mutant strain, CMC6, defective in its ability to cause pink disease and fruit discoloration, was generated by nitrosoguanidine mutagenesis. A DNA fragment that restored these activities was isolated by screening a genomic cosmid library of P. citrea. A large open reading frame of 2,361 bp, identified by nucleotide sequencing of a subclone of the complementing DNA, showed high similarities to identified genes encoding glucose dehydrogenase (GDH) in Escherichia coli, Acinetobacter calcoaceticus, and Gluconobacter oxydans. The predicted amino acid sequence of GDH of P. citrea was identical to known GDHs in these bacteria by 54, 44, and 34%, respectively. GDH of P. citrea has a predicted molecular mass of 86.2 kDa, contains a conserved binding domain for the cofactor pyrroloquinoline quinone, and possesses GDH activity as demonstrated by biochemical assay. GDH is the key branch point enzyme leading to the biosynthesis of gluconate, which in turn serves as the substrate leading to the formation of 2-ketogluconate, 2,5-diketogluconate, 6-phosphogluconate, and 2-keto-6-phosphogluconate. Addition of gluconate to CMC6 restores the juice- and fruit-discoloring activity. Although the pigments formed by heating (or canning) have not been identified, it is clear that GDH is one of the enzymes required for pigment formation leading to pink disease.  相似文献   

10.
The optimization of L-sorbose synthesis by regiospecific dehydrogenation of D-sorbitol using Gluconobacter oxydans is reported. The current L-sorbose production processes that are based on G. oxydans and other bacterial strains are suboptimal as to yield and rate of L-sorbose synthesis. One reason for these problems is the toxicity that is induced by the substrate D-sorbitol when used in concentrations of >10% (w/v). This phenomenon significantly limits the potentials of L-sorbose production from an industrial point of view. The goal of this study was to develop a fast production process that yields L-sorbose in stoichiometric amounts starting from D-sorbitol concentrations that exceed 10% (w/v). A gradual improvement of the inoculum build-up procedure, culture medium composition, and process parameters ultimately led to a theoretically maximal L-sorbose productivity (200 g L(-1) of L-sorbose from 200 g L(-1) of D-sorbitol in 28 h of fermentation) using a Gluconobacter oxydans mutant strain that was selected under conditions of substrate inhibition. Because the D-sorbitol/L‐sorbose bioconversion is used to mass-produce vitamin C, the procedure reported here will contribute to a more efficient and more economic synthesis of vitamin C.  相似文献   

11.
An intermittent feeding system for shaking-flasks was developed to close the gap between batch operated shaking-flasks and fed-batch operated as well as pH-controlled stirred tank reactors. A precise syringe pump was connected via a substrate distribution system to individual 2/2-way miniature valves, one for each of up to 16 shaking-flask. The shaking-flasks were equipped with pH-probes. A process computer controls the intermittent feeding of substrates by tracking predefined individual feeding profiles as well as the base (or acid) addition for individual pH-control of the shaking-flasks. Higher concentrations of aerobic cells with higher cellular activities were achieved in fed-batch operated and pH-controlled shaking-flasks as compared to the conventional batch operation. Physiological effects of an intermittent feeding were studied in a stirred tank reactor with a recombinant E. coli strain, which expressed the GDP-mannose-pyrophosphorylase enzyme under the control of the lac-promoter.  相似文献   

12.
吡咯喹啉醌(Pyrroloquinoline quinone,PQQ)是一种重要的氧化还原酶辅基,具有多种生理生化功能,在食品、医药卫生及农业等领域具有广泛的应用。文中采用重组氧化葡萄糖酸杆菌生物合成吡咯喹啉醌。首先构建丙酮酸脱羧酶基因GOX1081敲除的重组菌G. oxydans T1,减少副产物乙酸的形成。然后利用筛选的内源性组成型启动子P0169融合表达pqqABCDE基因簇及tldD基因,构建重组菌G. oxydans T2。最后对发酵培养基添加物和发酵条件进行优化。结果显示重组菌G. oxydans T1、G. oxydans T2生物量较野生菌分别提高43.02%和38.76%,而PQQ的产量分别是野生菌的4.82倍和20.5倍。进一步优化G. oxydans T2碳源及培养条件,最终PQQ产量达(51.3241±0.8997)mg/L,是野生菌的345.62倍。通过基因工程手段,可以有效提高氧化葡萄糖酸杆菌的生物量和合成PQQ的产量,为改善PQQ生物合成效率奠定基础。  相似文献   

13.
微生物法生产二羟基丙酮的研究进展   总被引:2,自引:0,他引:2  
以下综述了微生物发酵法制备二羟基丙酮的研究进展。利用微生物发酵法生产二羟基丙酮比化学合成法具有更大的优势,氧化葡萄糖酸杆菌是二羟基丙酮工业发酵生产中最有应用价值的菌株。发酵过程中底物、产物、氧气、菌体量等各种因素都会对二羟基丙酮产量产生影响,在各种发酵方式中反复流加工艺和固定化发酵工艺最有前途。重组菌株的构建和发酵工艺的优化是将来微生物发酵生产二羟基丙酮的发展方向。  相似文献   

14.
新组合菌系氧化葡萄糖酸杆菌SCB329-苏芸金芽孢杆菌SCB933能在较长时间内保持高的转化活力且具有极强的抗杂菌污染的特性。在一次投糖分批发酵的基础上,探索在控制溶氧、pH、温度等条件下,分批加入L-山梨糖发酵生产2-酮基-L-古龙酸新工艺。采用新工艺,既充分利用了菌系的优良特性,又避免了高糖浓度可能对菌系造成的不良影响。L-山梨糖最终浓度达到14%(w/v),产酸120—135g/l,转化率90%左右,发酵周期40—65h。  相似文献   

15.
To simulate production-scale conditions of gluconic acid fermentation by Gluconobacter oxydans, different experimental setups are presented in this study. From the determination of the time constants of a production-scale reactor, it can be concluded that mixing and oxygen transfer are the rate-limiting mechanisms. This results in oxygen concentration gradients which were simulated in a one-compartment reactor in which the oxygen concentration was fluctuated by a fluctuated gassing with air and nitrogen. It could be concluded that only very long periods of absence of oxygen (ca. 180 s) results in lower specific oxygen uptake rates by Gluconobacter oxydans. From scale-down studies carried out in a two-compartment system to simulate a production-scale reactor more accurately, it could be concluded that not only the residence time in the aerated part of the system is important, but the liquid flow in between the different parts of the reactor is also an essential parameter. It could also be concluded that the microorganisms are not influenced negatively by the fluctuated oxygen concentrations with respect to their maximal oxidation capacity. The two-compartment system can also be used for optimization experiments in which the "aerated" compartment was gassed with pure oxygen. From these experiments it was concluded that also a short residence of the cells at high oxygen concentrations diminished the growth and product formation rates. These experiments show the necessity of the scale-down experiments if optimization is carried out. The two-compartment system presented in this study is a very attractive tool for reliable scale-down experiments.  相似文献   

16.
葡萄糖酸氧化杆菌可将葡萄糖转化为5-酮基-D-葡萄糖酸(5-KGA),而5-KGA是重要食品添加剂L(+)-酒石酸的合成前体。为提高5-KGA产量及其对葡萄糖的转化率,对5-KGA发酵生产的工艺条件进行优化。在摇瓶水平最适的培养基和培养条件下,5-KGA最高产量为19.7 g/L,较优化前提高43.8%。在5 L发酵罐上控制恒定pH值5.5、溶氧浓度15%条件下,5-KGA产量达到46.0 g/L,较摇瓶最高产量提高1.3倍,应用葡萄糖流加工艺,5-KGA最高产量达到75.5 g/L,转化率超过70%,与已见报道的最高水平相比提高了32.0%,为实现微生物发酵生产5-KGA、进而合成L(+)-酒石酸的工业化提供了切实有效的途径。  相似文献   

17.
对选出的巨大芽孢杆菌突变株Bn,B5进行了生物学特性及发酵条件的研究,发现它们具耐低pH和抗高浓2KGA特性.可促进氧化葡萄糖酸杆菌生长,使其延迟期缩短,产酸增加.适宜的通气量下,摇瓶糖酸转化率提高10%~14%;当发酵pH为6.2~6.6时,转化率提高20%~30%.  相似文献   

18.
We developed a novel <50-microm thick nano-porous bi-layer latex coating for preserving Gluconobacter oxydans, a strict aerobe, as a whole cell biocatalyst. G. oxydans was entrapped in an acrylate/vinyl acetate co-polymer matrix (T (g) approximately 10 degrees C) and cast into 12.7-mm diameter patch coatings (cellcoat) containing approximately 10(9) CFU covered by a nano-porous topcoat. The oxidation of D-sorbitol to L-sorbose was used to investigate the coating catalytic properties. Intrinsic kinetics was studied in microbioreactors using a pH 6.0 D-sorbitol, phosphate, pyruvate (SPP) non-growth medium at 30 degrees C, and the Michaelis-Menten constants determined. By using a diffusion cell, cellcoat and topcoat diffusivities, optimized by arresting polymer particle coalescence by glycerol and/or sucrose addition, were determined. Cryo-FESEM images revealed a two-layer structure with G. oxydans surrounded by <40-nm pores. Viable cell density, cell leakage, and oxidation kinetics in SPP medium for >150 h were investigated. Even though the coatings were optimized for permeability, approximately 50% of G. oxydans viability was lost during cellcoat drying and further reduction was observed as the topcoat was added. High reaction rates per unit volume of coating (80-100 g/L x h) were observed which agreed with predictions of a diffusion-reaction model using parameters estimated by independent experiments. Cellcoat effectiveness factors of 0.22-0.49 were observed which are 20-fold greater than any previously reported for this G. oxydans oxidation. These nano-structured coatings and the possibility of improving their ability to preserve G. oxydans viability may be useful for engineering highly reactive adhesive coatings for multi-phase micro-channel and membrane bioreactors to dramatically increase the intensity of whole-cell oxidations.  相似文献   

19.
20.
研究了在10L发酵罐中D-葡萄糖串联发酵生产维生素C前体——2-酮基-L-古龙酸的发酵工艺条件。第一步发酵采用欧文氏菌(Erwinia sp.)的突变株SCB247,培养36小时,可将D-葡萄糖转化成中间体2,5-二酮基-D-葡萄糖酸,在发酵液中约累积180mg/ml。第二步发酵采用棒状杆菌(Corynebacterium sp.)SCB3058,可将2,5-二酮基-D-葡萄糖酸专一性地还原生成2-酮基-L-古龙酸。在细胞生长进入对数生长期后期时,加入经十二烷基硫酸钠处理的第一  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号