首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Gluconobacter oxydans DSM 2343 is known to catalyze the oxidation of glucose to gluconic acid, and subsequently, to 2-keto-d-gluconic acid (2-KGA) and 5-keto-d-gluconic acid (5-KGA), by membrane-bound and soluble dehydrogenases. In G. oxydans MF1, in which the membrane-bound gluconate-2-dehydrogenase complex was inactivated, formation of the undesired 2-KGA was absent. This mutant strain uniquely accumulates high amounts of 5-KGA in the culture medium. To increase the production rate of 5-KGA, which can be converted to industrially important l-(+)-tartaric acid, we equipped G. oxydans MF1 with plasmids allowing the overproduction of the soluble and the membrane-bound 5-KGA-forming enzyme. Whereas the overproduction of the soluble gluconate:NADP 5-oxidoreductase resulted in the accumulation of up to 200 mM 5-KGA, the detected 5-KGA accumulation was even higher when the gene coding for the membrane-bound gluconate-5-dehydrogenase was overexpressed (240 to 295 mM 5-KGA). These results provide a basis for designing a biotransformation process for the conversion of glucose to 5-KGA using the membrane-bound as well as the soluble enzyme system.The corresponding author contributed equally to the first author.  相似文献   

2.
Gluconobacter oxydans converts glucose to gluconic acid and subsequently to 2-keto-d-gluconic acid (2-KGA) and 5-keto-d-gluconic acid (5-KGA) by membrane-bound periplasmic pyrroloquinoline quinone-dependent and flavin-dependent dehydrogenases. The product pattern obtained with several strains differed significantly. To increase the production of 5-KGA, which can be converted to industrially important l-(+)-tartaric acid, growth parameters were optimized. Whereas resting cells of G. oxydans ATCC 621H converted about 11% of the available glucose to 2-KGA and 6% to 5-KGA, with growing cells and improved growth under defined conditions (pH 5, 10% pO2, 0.05% pCO2) a conversion yield of about 45% 5-KGA from the available glucose was achieved. As the accumulation of the by-product 2-KGA is highly disadvantageous for an industrial application of G. oxydans, a mutant was generated in which the membrane-bound gluconate-2-dehydrogenase complex was inactivated. This mutant, MF1, grew in a similar way to the wild type, but formation of the undesired 2-KGA was not observed. Under improved growth conditions, mutant MF1 converted the available glucose almost completely (84%) into 5-KGA. Therefore, this newly developed recombinant strain is suitable for the industrial production of 5-KGA.  相似文献   

3.
葡萄糖酸氧化杆菌可将葡萄糖转化为5-酮基-D-葡萄糖酸(5-KGA),而5-KGA是重要食品添加剂L(+)-酒石酸的合成前体。为提高5-KGA产量及其对葡萄糖的转化率,对5-KGA发酵生产的工艺条件进行优化。在摇瓶水平最适的培养基和培养条件下,5-KGA最高产量为19.7 g/L,较优化前提高43.8%。在5 L发酵罐上控制恒定pH值5.5、溶氧浓度15%条件下,5-KGA产量达到46.0 g/L,较摇瓶最高产量提高1.3倍,应用葡萄糖流加工艺,5-KGA最高产量达到75.5 g/L,转化率超过70%,与已见报道的最高水平相比提高了32.0%,为实现微生物发酵生产5-KGA、进而合成L(+)-酒石酸的工业化提供了切实有效的途径。  相似文献   

4.
A 5-ketogluconate (5-KGA)-forming membrane quinoprotein, gluconate dehydrogenase, was isolated from Gluconobacter suboxydans strain IFO 12528 and partially sequenced. Partial sequences of five internal tryptic peptides were elucidated by mass spectrometry and used to isolate the two adjacent genes encoding the enzyme (EBI accession no. AJ577472). These genes share close homology with sorbitol dehydrogenase from another strain of G. suboxydans (IFO 3255). Substrate specificity of gluconate 5-dehydrogenase (GA 5-DH) turned out to be quite broad, covering many polyols, amino derivatives of carbohydrates, and simple secondary alcohols. There is a broad correlation between the substrate specificity of GA 5-DH and the empirical Bertrand-Hudson rule that predicts the specificity of oxidation of polyols by acetic acid bacteria. Escherichia coli transformed with the genes encoding gluconate dehydrogenase were able to convert gluconic acid into 5-KGA at 75% yield. Furthermore, it was found that 5-KGA can be converted into tartaric acid semialdehyde by a transketolase. These results provide a basis for designing a direct fermentation-based process for conversion of glucose into tartaric acid.  相似文献   

5.
2-Keto-d-gluconic acid (2-KGA) is a high-value-added product from lignocellulosic straw-based biorefining process obtained via cell catalysis using Gluconobacter oxydans (G. oxydans); nonetheless, the economical production has some limitations because of the formation of undesirable mixture products of keto-gluconic acid from glucose. In this study, it was demonstrated that pulse addition of hydrogen peroxide (H2O2) to synthetic media was beneficial to improve the conversion rate of glucose to 2-KGA by 1.47-fold in G. oxydans. Moreover, some lignocellulosic degradation compounds served as substitute and played the role of H2O2 on corn stover hydrolysate for the production of 2-KGA. By conducting qRT-PCR analysis, eight dehydrogenase genes were identified in G. oxydans, which were responsible for regulating 2-KGA production. Moreover, most of the identified genes were found to produce membrane-bound glucose dehydrogenase and gluconate 2-dehydrogenase, and were up-regulated by adding H2O2 or degradation compounds. These up-regulated genes could be responsible for directing cell catalysis of glucose to 2-KGA in G. oxydans.  相似文献   

6.
For the conversion of glucose to 5-keto-d-gluconate (5-KGA), a precursor of the industrially important l-(+)-tartaric acid, Gluconobacter strains were genetically engineered. In order to increase 5-KGA formation, a plasmid-encoded copy of the gene encoding the gluconate:NADP-5 oxidoreductase (gno) was overexpressed in G. oxydans strain DSM 2434. This enzyme is involved in the nonphosphorylative ketogenic oxidation of glucose and oxidizes gluconate to 5-KGA. As the 5-KGA reductase activity depends on the cofactor NADP+, the sthA gene (encoding Escherichia coli transhydrogenase) was cloned and overexpressed in the GNO-overproducing G. oxydans strain. Growth of the sthA-carrying strains was indistinguishable from the G. oxydans wild-type strain and therefore they were chosen for the coupled overexpression of sthA and gno. G. oxydans strain DSM 2343/pRS201-gno-sthA overproducing both enzymes showed an enhanced accumulation of 5-KGA.  相似文献   

7.
为确定维生素C二步发酵中巨大芽孢杆菌(伴生菌)芽孢形成对氧化葡萄酸杆菌(产酸菌)产酸的影响,本研究通过对巨大芽孢杆菌生长特性分析,选取培养12h(未形成芽孢)和36h(芽孢大量形成)巨大芽孢杆菌B.m2980,检测其胞外液、胞内液以及混合液对产酸菌生成2-酮基-L-古龙酸的影响。结果表明,在未开始形成芽孢时,伴生菌胞外液、胞内液及混合液对产酸菌的生长和产酸有较低的促进作用,其中胞内液的促进能力大于胞外液;在芽孢生成后,胞外液以及混合液对产酸菌生长和产酸的促进能力显著提高。  相似文献   

8.
谷胱甘肽(GSH)能有效促进酮古龙酸杆菌的生长。就GSH对氧化葡萄糖酸杆菌和酮古龙酸杆菌一步混菌发酵的作用进行了探索,为进一步阐明维生素C一步发酵过程中氧化葡萄糖酸杆菌和酮古龙酸杆菌的关系并提供发酵工艺优化的依据。研究发现,在5L的发酵罐中,外加1mg/ml的GSH对混菌的发酵有着显著的促进作用,2-酮-L-古龙酸(2-KGA)产量提高了22.8%。通过16S rDNA荧光定量PCR法测菌数,发现GSH的添加使酮古龙酸杆菌的生长提高到148%,但抑制氧化葡萄糖酸杆菌的生长,使其生物量下降到61%。运用代谢组学方法分析发现,GSH能促进酮古龙酸杆菌的磷酸戊糖、三羧酸循环、硫酸盐等代谢,同时减缓氧化葡萄糖酸杆菌对L-山梨糖的消耗,以促进整个混菌体系的发酵效率。  相似文献   

9.
Enterobacter intermedium, isolated from grass rhizosphere, exhibited a strong ability to solubilize insoluble phosphate. This bacterium oxidized glucose to gluconic acid and sequentially to 2-ketogluconic acid (2-KGA), which was identified using HPLC and GC-MS. The ability of E. intermedium to solubilize phosphate and produce 2-KGA produce in broth medium containing different components was monitored with air and without air supply. With an air supply, the production of 2-KGA markedly increased to about 110 g/l at day 10 in media containing 0.2 M gluconic acid, while it was about 65 g/l without gluconic acid addition. With an air supply, the concentration of soluble phosphate significantly decreased to 200-250 mg/l in media containing 1% CaCO3, whereas it was about 1000 mg/l without CaCO3 addition. Without an air supply, the concentration of 2-KGA and phosphate were negligible throughout the culture period.  相似文献   

10.
In this study, the advantage of a novel measuring device for the online determination of oxygen and carbon dioxide transfer rates in shaking-flasks is reported for glucose oxidation by Gluconobacter oxydans. In this fermentation process, this device was used for the characterization of the oxidation pattern of different strains. G. oxydans NCIMB 8084 forms 2,5-diketogluconate from d-glucose in a multi-stage process via three different membrane-bound dehydrogenases. This strain was chosen for a scale-up of the process from shaking-flasks to a 2-l stirred vessel. An enhancement of 2,5-diketogluconate production was realized by controlling the pH at different levels during the fermentation.  相似文献   

11.
D-Xylonic acid is a versatile platform chemical with reported applications as complexing agent or chelator, in dispersal of concrete, and as a precursor for compounds such as co-polyamides, polyesters, hydrogels and 1,2,4-butanetriol. With increasing glucose prices, D-xylonic acid may provide a cheap, non-food derived alternative for gluconic acid, which is widely used (about 80?kton/year) in pharmaceuticals, food products, solvents, adhesives, dyes, paints and polishes. Large-scale production has not been developed, reflecting the current limited market for D-xylonate. D-Xylonic acid occurs naturally, being formed in the first step of oxidative metabolism of D-xylose by some archaea and bacteria via the action of D-xylose or D-glucose dehydrogenases. High extracellular concentrations of D-xylonate have been reported for various bacteria, in particular Gluconobacter oxydans and Pseudomonas putida. High yields of D-xylonate from D-xylose make G. oxydans an attractive choice for biotechnical production. G. oxydans is able to produce D-xylonate directly from plant biomass hydrolysates, but rates and yields are reduced because of sensitivity to hydrolysate inhibitors. Recently, D-xylonate has been produced by the genetically modified bacterium Escherichia coli and yeast Saccharomyces cerevisiae and Kluyveromyces lactis. Expression of NAD(+)-dependent D-xylose dehydrogenase of Caulobacter crescentus in either E. coli or in a robust, hydrolysate-tolerant, industrial Saccharomyces cerevisiae strain has resulted in D-xylonate titres, which are comparable to those seen with G. oxydans, at a volumetric rate approximately 30?% of that observed with G. oxydans. With further development, genetically modified microbes may soon provide an alternative for production of D-xylonate at industrial scale.  相似文献   

12.
就维生素C微生物一步发酵方法进行了探索,构建了酮古龙酸杆菌、氧化葡萄糖酸杆菌和芽孢杆菌三菌混菌一步发酵的方法。研究发现,植物内生芽孢杆菌可以与酮古龙酸杆菌配合,促进酮古龙酸杆菌生长和产酸。在有山梨醇存在的条件下酮古龙酸杆菌及其伴生菌能够快速地生长增殖,植物内生芽孢杆菌在发酵的10h中不断消耗山梨醇。5L的发酵罐中,酮古龙酸杆菌、氧化葡萄糖酸杆菌和植物内生芽孢杆菌三菌混菌一步发酵在恒定的30℃温度,600r/min搅拌速度和1.5vvm通气条件下,补料发酵过程中醇酸质量转化率达到了81.89%,在分批发酵过程中,醇酸质量转化率达到了87.90%,进一步优化了维生素C生产工艺。  相似文献   

13.
2-Keto-L-gulonic acid was produced from gluconic acid using co-immobilized cells of Gluconobacter oxydans and Corynebacterium sp. with 2,5-diketo-D-gluconic acid. Gluconobacter oxydans and Corynebacterium sp. were entrapped together with polyvinylalcohol and alginate. 50 g/l glucose, 50 g/l gluconic acid, and the mixture of equal volume of 50 g/l glucose and 50 g/l gluconic acid were used as substrates. When the ratio of two cells was 1 to 1 with 100 mg cells/ml, the conversion of 2-KLG from gluconic acid was 38% (g/g). © Rapid Science Ltd. 1998  相似文献   

14.
15.
碳源和氮源对5-酮基-葡萄糖酸生成的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
氧化葡萄糖杆菌Gluconobacter oxydans可以将葡萄糖氧化成葡萄糖酸,并进一步氧化成2-酮基-葡萄糖酸(2KGA)和5-酮基-葡萄糖酸(5KGA),其中5KGA在催化剂的作用下能够转化为L(+)-酒石酸。为了提高5-酮基-葡萄糖酸产量,以仅生成5KGA的氧化葡萄糖杆菌Gluconobacter oxydans HGI-1为出发菌株,研究不同碳源(蔗糖、乳糖、麦芽糖、淀粉、葡萄糖)和有机氮源(酵母浸粉、鱼粉、玉米浆、黄豆饼粉、棉籽饼粉)对5KGA产量的影响。500 mL摇瓶试验结果表明,当葡萄糖浓度为100 g/L时,5KGA产量最高为98.20 g/L;当有机氮源为酵母浸粉、鱼粉和玉米浆,其添加量的蛋白含量为1.60%时,5KGA产量分别为100.20 g/L、109.10 g/L和99.83 g/L,其中,使用鱼粉的5KGA产量最高,使用玉米浆的5KGA产量比酵母浸粉略低。出于经济考虑,文中选择玉米浆作有机氮源,并在5 L发酵罐中进行分批发酵放大试验,5KGA的产量为93.80 g/L,最大生成速率为3.48 g/(L·h),平均生成速率为1.56 g/(L·h)。结果表明,葡萄糖和玉米浆分别为Gluconobacter oxydans HGI-1规模化生产5KGA的最适碳源和氮源,可利用葡萄糖几乎全部(85.93%)转化为5KGA。  相似文献   

16.
A complex biocatalyst system with a bioreactor equipped with a microfiltration (MF) module was employed to produce high-content fructooligosaccharides (FOS) in a continuous process initiated by a batch process. The system used mycelia of Aspergillus japonicus CCRC 93007 or Aureobasidium pullulans ATCC 9348 with beta-fructofuranosidase activity and Gluconobacter oxydans ATCC 23771 with glucose dehydrogenase activity. Calcium carbonate slurry was used to control pH to 5.5, and gluconic acid in the reaction mixture was precipitated as calcium gluconate. Sucrose solution with an optimum concentration of 30% (w/v) was employed as feed for the complex cell system, and high-content FOS was discharged continuously from a MF module. The complex cell system was run at 30 degrees C with an aeration rate of 5 vvm and produced more than 80% FOS with the remainder being 5-7% glucose and 8-10% sucrose on a dry weight basis, plus a small amount of calcium gluconate. The system worked for a 7-day continuous production process with a dilution rate of 0.04 h(-1), and the volumetric productivity for total FOS was more than 160 g L(-1) h(-1).  相似文献   

17.
通过在培养基中添加不同量的玉米浆,研究其对氧化葡萄糖酸杆菌(俗称小菌)生产Vc前体2-酮基-L-古龙酸的影响,并研究玉米浆成分中的12种主要氨基酸对小菌产酸的影响。结果表明:每100 mL发酵培养基中添加2.5 g左右过滤除菌玉米浆时,2-酮基-L-古龙酸产量高达26.84 mg/mL,小菌活菌数为不添加玉米浆时小菌单菌发酵下的9.74倍。过量玉米浆抑制小菌产酸。12种氨基酸单独与氧化葡萄糖酸杆菌发酵培养及全部混合后与氧化葡萄糖酸杆菌发酵培养对产酸及菌体生长无影响。  相似文献   

18.
Incapability of Gluconobacter oxydans to produce tartaric acid   总被引:1,自引:0,他引:1  
The dependence of tartaric acid production by Gluconobacter oxydans ssp. oxydans ATCC 19357 and G. oxydans ssp. suboxydans ATCC 621 on vanadate was investigated. It was found with both organisms that trataric acid could only be produced in a medium containing vanadate (NH(4)VO(3)). A proposed intermediate of the tartaric acid metabolism in G. oxydans, 5-ketogluconic acid, was tested on its reactivity in the presence of the oxidizing catalyst vanadate. It could be shown that 5-ketogluconic acid and the catalyst vanadate, but not the activity of G. oxydans, were responsible for the formation of tartaric acid. G. oxydans was not able to produce tartaric acid by itself. The stereochemical identity of the formed tartaric acid could be identified as the L-(+)-type. Oxalic acid was formed from 5-ketogluconic acid with vanadate in the absence and in the presence of G. oxydans. The ratio of oxalic acid to tartaric acid was 1:1.  相似文献   

19.
Aspergillus niger ORS-4.410, a mutant of Aspergillus niger ORS-4 was produced by repeated irradiation with UV rays. Treatments with chemical mutagnes also resulted into mutant strains. The mutants differed from the parent strain morphologically and in gluconic acid production. The relationship between UV treatment dosage, conidial survival and frequency of mutation showed the maximum frequency of positive mutants (25%) was obtained along with a conidial survival of 59% after second stage of UV irradiation. Comparison of gluconic acid production of the parent and mutant ORS-4.410 strain showed a significant increase in gluconic acid production that was 87% higher than the wild type strain. ORS-4.410 strain when transferred every 15 days and monitored for gluconic acid levels for a total period of ten months appeared stable. Mutant ORS-4.410 at 12% substrate concentration resulted into significantly higher i.e. 85-87 and 94-97% yields of gluconic acid under submerged and solid state surface conditions respectively. Further increase in substrate concentration appeared inhibitory. Maximum yield of gluconic acid was obtained after 6 days under submerged condition and decreased on further cultivation. Solid state surface culture condition on the other hand resulted into higher yield after 12 days of cultivation and similar levels of yields continued thereafter.  相似文献   

20.
Enterobacter intermedium, isolated from grass rhizosphere, exhibited a strong ability to solubilize insoluble phosphate. This bacterium oxidized glucose to gluconic acid and sequentially to 2-ketogluconic acid (2-KGA), which was identified using HPLC and GC-MS. The ability of E. intermedium to solubilize phosphate and produce 2-KGA produce in broth medium containing different components was monitored with air and without air supply. With an air supply, the production of 2-KGA markedly increased to about 110 g/l at day 10 in media containing 0.2 M gluconic acid, while it was about 65 g/l without gluconic acid addition. With an air supply, the concentration of soluble phosphate significantly decreased to 200–250 mg/l in media containing 1% CaCO3, whereas it was about 1000 mg/l without CaCO3 addition. Without an air supply, the concentration of 2-KGA and phosphate were negligible throughout the culture period. RID= ID= <E5>Correspondence to: </E5>K.Y. Kim; <E5>email:</E5> kimkil&commat;chonnam.ac.kr Received: 21 August 2002 / Accepted: 25 September 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号