首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蔡爱军  马子川  刘敬泽 《生态学报》2007,27(10):4240-4246
比较研究了牛血清白蛋白(BSA)与α-MnO2和δ-MnO2的界面吸附作用及其影响因素。结果表明,BSA在两种MnO2颗粒物表面有明显的吸附,且δ-MnO2比α-MnO2对BSA的吸附能力略强。pH3.8~8.0范围内,BSA在α-MnO2和δ-MnO2上的吸附率随pH的升高而减小,pH3.8条件下,α-MnO2上的吸附率为88.2%,δ-MnO2上的吸附率为94.0%。BSA在α-MnO2和δ-MnO2上的吸附量均随BSA浓度的增加而增大,吸附率随NaCl浓度的增加而减小。BSA在α-MnO2上的吸附具有很高的不可逆性,δ-MnO2上的吸附完全不可逆。吸附过程中BSA发生解螺旋作用,引起结构熵增大。  相似文献   

2.
植物细胞H2O2的信号转导途径   总被引:9,自引:0,他引:9  
光、环境胁迫和植物激素ABA可以引起植物体内H2O2升高, 而H2O2作为一个较早进化出来的信号分子, 不仅在诱导氧化性光合作用中起了关键的作用, 并且可以调节诸如气孔运动、超敏反应、细胞凋亡和基因表达等许多过程. 细胞内H2O2浓度必须维持在一种精细平衡状态, 它一方面可以通过质膜氧化还原系统和光呼吸系统产生, 另一方面也存在完善的清除机制. H2O2从质外体或者产生源进入细胞, 然后进入亚细胞区域. H2O2可以调节信号转导蛋白, 如蛋白质磷酸化酶、转录因子、以及位于质膜或其它膜上的Ca2+通道. 其中, 蛋白质可逆磷酸化可启动细胞质和细胞核的下游信号转导, 通过影响转录因子而影响基因的表达; 转录因子通过氧化而激活自身或诱导其定向转运至细胞核内. 然而, H2O2作为信号分子的研究相对处于“年轻”阶段, 诸如细胞如何感受H2O2, 以及在细胞感受H2O2信号转导过程中哪种细胞过程是最主要的或是限速步骤, 何种基因对H2O2是特异和必需的等问题仍然所知甚少, 这些问题的破解依赖于功能基因组学和遗传学分析.  相似文献   

3.
大气CO2浓度升高对不同施氮土壤酶活性的影响   总被引:4,自引:1,他引:3  
利用中国唯一的无锡FACE(Free-air CO2 enrichment,开放式空气CO2浓度升高)平台,研究了大气CO2浓度升高对土壤β-葡糖苷酶、转化酶、脲酶、酸性磷酸酶、β-氨基葡糖苷酶的影响。研究发现,不同氮肥处理下大气CO2浓度升高对某些土壤酶活性的影响不同。在低氮施肥处理中,大气CO2浓度升高显著降低β-葡糖苷酶活性,但是在高氮施肥处理下,大气CO2浓度升高显著增加β-葡糖苷酶活性。在低氮和常氮施肥处理中大气CO2浓度升高显著增加了土壤脲酶活性,但在高氮水平下影响不显著。在低氮、常氮施肥处理中,大气CO2浓度升高对土壤酸性磷酸酶活性没有影响,而在高氮施肥处理中显著增强了土壤中磷酸酶活性。大气CO2浓度升高对土壤转化酶活性和β-氨基葡糖苷酶的活性有增加趋势,但影响不显著。研究还发现,在不同的CO2浓度下,土壤酶活性对不同氮肥处理的响应也不同。在正常CO2浓度下,土壤中β-葡糖苷酶活性随着氮肥施用量的增加而降低,而在大气CO2浓度升高条件下,却随着氮肥施用量的增加而增加。在大气CO2浓度升高条件下,高氮施肥显著增加了转化酶和酸性磷酸酶活性,而在正常CO2浓度下,影响不显著。在大气CO2浓度升高条件下,氮肥处理对脲酶活性的影响不大,但在正常CO2浓度下,脲酶活性随着氮肥施用量的增加而增加。氮肥对β-氨基葡糖苷酶活性的影响不明显。  相似文献   

4.
 以砂培菊芋(Helianthus tuberosus)幼苗作为试验材料,分别进行不同浓度NaCl (50、 100、150、200、250 mmol&;#8226;L-1)和Na2CO3 (25、50、 75、100、125 mmol&;#8226;L-1)胁迫处理,以1/2全营养液作为对照,处理7 d后研究NaCl和Na2CO3胁迫处理对菊芋幼苗叶片光合作用及叶绿素动力学 参数的影响。结果表明:1)在NaCl处理下,当浓度小于150 mmol&;#8226;L-1时,增加了菊芋的叶绿素含量、净光合速率(Net photosynthetic rate, Pn)和气孔导度(Stomatal conductivity, Gs),对荧光参数PSⅡ的电子传递情况( Fm/Fo)、PSⅡ原初光能转换效率(Fv/Fm)、PSⅡ量子效率 (Actual quantum yield of PSⅡ under actinic irradiation,φPSⅡ)和光化学猝灭系数(Photochemical quenching coefficient, qP)和非 光化学猝灭系 数(Non-photochemical quenching coefficient, NPQ)没有显著影响,随着浓度的增加,各项生理指标与对照相比除了NPQ显著 增加,其余均显著降低;2)在Na2CO3胁迫处理下,随着Na2CO3浓度的增加,与对照相比菊芋幼苗叶绿素含量、Pn、Gs以及叶绿素a荧光诱导动力 学参数Fm/Fo、Fv/Fm、φPSⅡ和qP均显著降低,NPQ显著增加;3)就NaCl和Na2CO3相比而言,在相同Na+浓度情况下,处于Na2CO3胁迫下的菊芋 幼苗的叶绿素含量、Pn、Gs以及叶绿素a荧光诱导动力学参数Fm/Fo、Fv/Fm、φPSⅡ和qP下降幅度和NPQ的增加幅度均显著大于NaCl,这说明 NaCl和Na2CO3胁迫均对菊芋幼苗造成不同程度的伤害,但在相同Na+浓度情况下,Na2CO3的伤害程度大于NaCl。由此说明菊芋对盐的忍耐程度高 于碱。  相似文献   

5.
外源氮对沼泽湿地CH4和N2O通量的影响   总被引:1,自引:0,他引:1  
三江平原沼泽湿地受到大气沉降、地表径流、农业排水等外源氮素的输入,对湿地生态系统CH4和N2O通量有重要影响。采用野外原位施肥试验模拟外源氮输入,设0,60,120,240kgN•hm-2 4种试验处理,探讨外源氮对沼泽湿地CH4和N2O通量的影响。结果表明,外源氮促进了CH4和N2O排放。与对照处理比较,各施氮水平CH4平均排放通量分别增加了181%,254%和155%,N2O排放通量分别增加了21%,100%和533%。外源氮输入对CH4排放的季节变化形式影响不大,而N2O的季节变化形式随着氮输入表现出波动变化的趋势。不同施氮水平对CH4排放的促进作用与植物生长阶段和产CH4的微生物过程密切相关,N2O排放通量随氮输入量呈指数增加(R2=0.97,p<0.01)。外源氮通过影响湿地微生物过程来进一步影响CH4和N2O的排放。  相似文献   

6.
乔匀周  王开远  张远彬 《生态学报》2007,27(4):1333-1342
研究了两个种植密度下,红桦 (Betula albosinensis)苗冠结构特征对CO2浓度的响应,在此基础上探讨了CO2浓度升高对植物竞争压力的影响。结果表明,冠幅、冠高、苗冠表面积和苗冠体积均受CO2浓度升高的影响而增加,但是受密度增加的影响而降低。CO2浓度升高对苗冠的促进效应在低密度条件下大于高密度处理,高密度条件下苗冠基本特征部分地受到CO2浓度升高的促进作用;升高种植密度的效应则在高CO2浓度条件下大于现行CO2浓度处理。高CO2浓度和高密度条件下,LDcpa(单位苗冠投影面积叶片数)、LDcv(单位苗冠体积叶片数) 和苗冠底部枝条的枝角均低于相应的现行CO2浓度处理和低密度处理,这主要是由于冠幅和冠高的快速生长所造成的。升高CO2浓度对枝条长度的影响与枝条在主茎上所处位置有关。总之,升高CO2浓度有利于降低增加种植密度对苗冠所带来的负效应,而增加种植密度降低了升高CO2浓度的正效应。LDcpaLDcv的降低表明,红桦在升高CO2浓度和种植密度的条件下,会作出积极的响应,从而缓解由于生长的增加所带来的竞争压力的增加。  相似文献   

7.
对低浓度Na2CO3胁迫下星星草幼苗相对电导率、O-2产生速率、H2O2含量以及保护酶CAT、SOD和POD活性的研究结果表明,低盐胁迫1 d后,星星草幼苗细胞膜的通透性、O-2产生速率、H2O2含量及保护酶活性都随着盐胁迫的加剧而升高,其具体的变化规律与盐胁迫强度和幼苗细胞膜的受损伤程度密切相关,但相关关系的性质上具有差异。  相似文献   

8.
顾舒平  尹黎燕  李洁琳  李伟   《植物生态学报》2009,33(6):1184-1190
 运用pH-drift的方法研究了在不同碱度条件下中华水韭(Isoetes sinensis)的沉水叶片昼夜CO2吸收的特征。结果表明中华水韭的沉水叶片具有昼夜吸收水中CO2的能力, 而不具备利用水中的HCO 3的能力, 进一步证明了水生植物中华水韭的光合碳同化途径具有景天酸代谢(CAM)的特征。中华水韭沉水叶片光照条件下对水中CO2的吸收速率在一定的浓度范围内正相关于水中的CO2浓度。光照条件下, 中华水韭的pH-drift实验的pH补偿点分别为(8.1±0.3)和(7.9±0.1) mmol·L–1, 最终[CT]/Alk值为(1.009±0.01)和(1.022±0.004)。碱度对中华水韭夜晚CO2的吸收速率有显著的影响(F = 38.73, p < 0.000 1)。总碱度1.70 mmol·L–1溶液中的中华水韭沉水叶片在相对较低的CO2浓度(0.04±0.001 mmol·L–1)水平下即表现出对CO2的净吸收。调查了野外一处中华水韭沉水种群的生境pH值及CO2浓度的昼夜变化, 发现水体碱度约为1.59 mmol·L–1, 一昼夜的pH值波动不大, 平均为(6.1±0.04), 昼夜CO2浓度存在波动, 午夜水中的CO2浓度是午后的近3倍。  相似文献   

9.
 研究了CO2加富对丹尼斯凤梨(Guzmania`Denise’)和吉利凤梨(Guzmania `Cherry’)叶片光合速率、植株生长、开花和光合相关酶活性的 影响。结果表明,处理30 d期间,处理(600±40)、(900±40) μmol CO2&;#8226;mol-1的净光合速率分别比同期对照增加了6.24%~31.91%和11.92%~ 41.48%;CO2加富下促进了叶片中可溶性糖和淀粉的积累, 蒸腾速率和气孔导度下降,Rubisco活性增加,乙醇酸氧化酶活性则明显下降。(600 ±40)μmol CO2&;#8226;mol-1处理下的株高、叶面积分别比同期对照下增加了6.94%~14.63%和1.66%~7. 06%,而处理(900±40) μmol CO2&;#8226;mol-1下 分别增加了9.71%~20.85%和2.87%~11.62%;CO2加富下促进了干重和鲜重的积累。此外,CO2加富提前了吉利凤梨的花期。  相似文献   

10.
SO2对蚕豆根尖和叶尖细胞遗传损伤作用的研究   总被引:2,自引:1,他引:1  
刘静  仪慧兰 《植物研究》2007,28(6):758-762
采用微核实验技术,研究大气污染物SO2对蚕豆根尖和叶尖细胞的遗传损伤效应。结果表明2.80和28 mg·m-3的SO2熏气可以诱发蚕豆根尖和叶尖细胞损伤,导致根尖细胞有丝分裂指数下降,根尖和叶尖间期细胞微核率增高,并具有时间效应和浓度效应。经水恢复培养后,根尖分裂细胞数增多,微核率降低,说明恢复培养能够缓解高浓度SO2对根尖细胞的遗传损伤。用石蜡层隔断SO2在根部水中的溶解后,根尖细胞微核率低于叶尖细胞微核率,而在非隔断组中则相反,说明SO2在水中的溶解是产生毒性效应的重要原因。高浓度SO2熏气对蚕豆根尖和叶尖细胞具有遗传学毒性,由于根尖分生区具有较高的分裂指数和微核率,对环境SO2毒性的反应更灵敏,蚕豆根尖微核实验更适于对环境SO2的监测。  相似文献   

11.
青海省三江源区人工草地生态系统CO2通量   总被引:13,自引:2,他引:11       下载免费PDF全文
 了解三江源人工草地净生态系统CO2交换(Net ecosystem CO2 exchange, NEE)的季节变化规律和主要生物因子及环境因子对这些过程的影响将有助于认识青藏高原人工草地生态系统碳循环、生态价值、功能,以及对三江源区的生态安全的重要意义。该研究利用涡度相关技术,于2005年9月1日至2006年8月31日对位于青海腹地的垂穗披碱草(Elymus nutans)人工草地的NEE及生物和环境因子进行观测, 阐明NEE及其组分的动态变化特征和影响因子。三江源区人工草地生态系统的日最大吸收量为2.38 g C·m-2·d-1,出 现在7月30日。日间最大吸收率和最大排放率都出现在8月,分别为-6.82和2.95μmol CO2·m-2·s-1。在生长季, 白天的NEE主要受光合有效辐射(Photosynthe tically active rad iation, PAR)变化控制,同时又与叶面积指数和群落多样性交互作用,共同调节光合速率和光合效率的强度。最大光合同化速率为2.46~10.39μmol CO2·m-2·s-1,表观初始光能利用率为0.013~0.070μmol CO2·μmol-1 PAR。 在碳交换日过程中,NEE并不完全随着 PAR的增加而增大,当PAR超过某一值(>1 200μmol ·m-2·s-1)时,NEE随PAR的增加而降低。受温度的影响,生长季的生态系统的呼吸商Q10(1.8)小于非生长季节的 2.6)。 生态系统呼吸主要受温度的控制,同时也受到叶面积指数的显著影响。生长季昼夜温差大并不利于生态系统的碳获取。 三江源区人工草地生态系统是一个较强的碳汇,为-49.35 g C·m-2·a-1。  相似文献   

12.
 采用每日定时向密封人工气候室补充CO2的方法,研究了3种CO2浓度(平均浓度分 别为287.11、532.88和780.46 μmol·mol-1)对茴香 (Foeniculum vulgare)生长、精油含量和组分的影响。结果表明:随着CO2浓度的升高,茴香的株高、花序数、花序鲜重、花序干重、全株干重 和植株的干物率均有所上升;植株可溶性糖和全碳含量不断升高,而全氮和蛋白氮含量不断减少;叶色素含量呈下降趋势,叶绿素a/b比的差异 不显著;植株精油含量(分别为1.26、1.45和1.57 ml·(100 g) -1 DW)和单株精油产量(分别为0.019、 0.023和0.033 ml)均随之升高。从茴 香植株的精油中鉴定出22种成分,用不同浓度的CO2处理,精油的成分种类没有差异,成分相对含量却有差别,差异达到极显著水平的有:醎蒎 烯、鈅蒎烯、月桂烯、对聚伞花素、反式葑醇乙酸酯和顺式茴香脑;含量差异达到显著水平的有:香桧烯、水芹烯、罗勒烯、鉥萜品烯、3,4- 二甲基-2,4,6_三烯、爱草脑、葑醇乙酸酯、古巴烯、 金合欢烯和吉玛烯。茴香精油的主要成分反式茴香脑的含量(分别为55.94%、57.20%和 59.5 5%)随着CO2浓度的升高而升高,而柠檬烯含量(29.60%、30.24%和26.12%)表现出相反的趋势,二者在不同的CO2浓度处理之间差异均不 显著。  相似文献   

13.
机械伤害和外源茉莉酸诱导豌豆幼苗H2O2系统性产生   总被引:1,自引:0,他引:1  
以豌豆(Pisum sativum L.)幼苗为试材, 采用DAB组织染色、CeCl3细胞化学染色和TiCl4显色等多种方法, 跟踪了伤害和外源茉莉酸(jasmonic acid, JA)处理后H2O2的时空动态变化. 结果显示, 伤害和外施JA可以诱导H2O2系统性产生, 无论是伤害叶片、邻近未伤害叶片还是低节位远端叶片, 伤害处理后1 h, H2O2含量即有所增加, 3~5 h后H2O2含量达到最大, 随后开始下降, 至处理后12 h, H2O2含量基本恢复到对照水平; 相应地, 伤害和JA处理后, 抗氧化酶类活性迅速提高; NADPH氧化酶抑制剂二苯基碘(diphenylene iodonium, DPI)可以显著抑制伤害和JA诱导的H2O2迸发. H2O2亚细胞定位结果显示, 伤害和JA诱导产生的H2O2主要分布于质膜、细胞壁和细胞间隙. JA的胶体金免疫电子显微镜定位结果表明, 伤害后JA含量迅速增加, 显示在叶肉细胞的细胞壁和韧皮部筛管与伴胞分子中金颗粒数量明显增加.  相似文献   

14.
 为探讨西双版纳独特地方气候背景下,热带季节雨林CO2浓度的时空变化特征和不同时间尺度上环境因素对森林CO2浓度时间分布的作用,以及 为研究热带季节雨林的碳通量、净生态系统交换量(Net ecosystem exchange, NEE)等提供支持,我们利用热带季节雨林林冠上方和林内近地层 CO2浓度连续监测资料,结合同步气象资料进行了统计分析。研究结果表明:在植被生理活动、土壤呼吸以及林内湍流的共同作用下,西双版纳 热带季节雨林CO2浓度表现出明显的日变化、季节变化和林冠上下差异。在日尺度上,林冠上方的CO2浓度时间变化曲线为“单峰型”,林内近 地层CO2浓度时间变化曲线为“双峰型”,造成林内近地层傍晚第二个峰值的主要因子是地形因子作用下形成的局地环流。在季节尺度上,林冠 上方CO2浓度主要受林冠代谢作用的影响,呈现雨季低、干季高的特点,而林内近地层的CO2浓度则主要受地表呼吸过程所控制,季节变化趋势 与林冠上方相反。林冠上方CO2浓度低于林内近地层CO2浓度,且差异较大;在日尺度上,各月(除12月外)CO2浓度的最大差值皆大于80 mg·m -3,且出现在傍晚;在季节尺度上,最大值为-62.9 mg·m-3,出现在10月,最小值为-8.4 mg·m-3,出现在12月。  相似文献   

15.
 依托FACE(Free-air CO2 enrichment)研究平台, 利用特制分根集气生长箱, 采用静态箱-GC(Gas chromatography)法, 连续两年研究 了大气CO2浓度升高和不同氮肥水平对冬小麦拔节期、孕穗抽穗期和灌浆末期的根系呼吸及生物量的影响。两季结果表明, CO2浓度升高和高氮 肥量均不同程度地增加了3个阶段的地上部和地下部的生物量, 这有利于增加根茬的还田量; CO2浓度升高对冬小麦不同生长阶段的根系呼吸影 响不同, 在拔节期影响较小;孕穗抽穗期显著增加了根系呼吸, 2004~2005季分别增加33.8%(148.1 mg N&;#8226;kg-1 干土, HN)和43.9%(88.9 mg N&;#8226;kg-1 干土, LN), 2005~2006季分别为23.8%(HN)和28.9%(LN); 而灌浆末期显著降低了根系呼吸, 2004~2005季分别降低31.4%(HN)和23.3% (LN), 2005~2006季分别为25.1%(HN)和18.5%(LN); 高施氮量比低施氮量促进了根系呼吸; 随着作物生长根系呼吸与地下生物量呈显著线性负相 关, 高CO2环境中的R2变小,表明随着作物生长发育高CO2浓度降低了作物根系呼吸与地下部生物量积累间的相关性.  相似文献   

16.
利用透射电镜技术对Na2CO3胁迫下星星草叶肉细胞超微结构进行了观察。结果表明:未胁迫的叶肉细胞排列疏松,各种细胞器结构完整,叶绿体含少量淀粉粒和脂质球。轻度盐胁迫(2g/L,4g/L Na2CO3)对叶肉细胞超微结构影响较小。中度盐胁迫(6g/L,8g/L Na2CO3)引起叶肉细胞超微结构的变化,叶绿体类囊体肿胀,基粒紊乱,不含淀粉粒,脂质球数量增加,叶绿体由原来的梭形或椭球形变成圆球状;部分线粒体嵴消失,出现晶体结构;中央大液泡破裂;核逐渐降解。高度盐胁迫(10g/L,12g/L Na2CO3)下,叶绿体片层结构消失,脂质球数量增加,体积变大,被大量的膜片层所包围,叶绿体内、外膜消失,叶肉细胞中看不到叶绿体的存在;膜片层包围线粒体;叶肉细胞中可见大量的泡状结构和膜片层,叶肉细胞死亡。上述结果表明,细胞器特别是叶绿体膜结构的破坏与盐胁迫叶肉细胞最终死亡密切相关  相似文献   

17.
1γ2蛋白的纯化及其与腺苷酸环化酶的互作关系   总被引:2,自引:0,他引:2  
对G蛋白β1γ2亚基及偶联组分在信号传导中的作用进行了初步研究. 以离体昆虫细胞Sf9(Spodoptera frugiperda, 秋粘虫卵巢细胞)或H5(Trichoplusia ni, 粉纹夜蛾细胞)为生物反应器, 高效表达了G蛋白β1γ2亚基. 用Ni-NTA亲和层析柱, 经快速蛋白纯化技术(FPLC)获得高纯度的Gβ1γ2. 活性测定表明, 纯化的GGβ1γ2能显著刺激腺苷酸环化酶(AC2)的活力. 应用基于表面胞质团共振现象的BIAcore技术, 采用生物传感芯片NTA(biosensor chip NTA)直接证明腺苷酸环化酶2 (AC2)的胞质末端C2区域为G蛋白β1γ2亚基的结合区, 从而明确了二者互作的活性位点和结合位点同位于该区域.  相似文献   

18.
 蒙古栎(Quercus mongolica)是东北地区天然次生林重要组成树种, 研究该树种对未来气候变暖的响应, 可为预测未来气候变暖情况下蒙古栎林的发展动态、制定合理的经营措施提供科学参考。该文旨在探讨不同的供氮水平下, CO2浓度和温度升高综合作用对蒙古栎幼苗生物量及其分配的影响。实验采用人工气候箱控制, 控制条件分别为温度升高4 ℃(ET)、CO2浓度倍增(700 μmol CO2 ·mol–1) × 温度升高4 ℃ (ECET)和对照(正常温度, CO2浓度为400 μmol CO2·mol–1) (CK), 每个控制条件幼苗的基质分别用3种氮素水平处理: N1 (15 mmol·L–1 N)、N2 (7.5 mmol·L–1 N)和N3 (不施氮)。研究结果显示, 1)在ET条件下, N1明显促进幼苗茎的高生长、径生长和生物量积累, 幼苗生物量的分配随氮素浓度的增加, 地下生物量所占的比例增大。2) ECET条件下N1明显促进幼苗的高生长, 但对径生长影响不显著, 对幼苗总生物量积累的影响不显著。但N1增加了地下生物量的比例。3) ET与ECET条件下幼苗叶片的碳氮比均随供氮水平降低而升高, 但ECET下碳氮比的升高是由于叶片碳含量较高引起的, 而ET条件下则是由于叶片氮含量的降低而引起的。ECET和ET条件较低的氮素供应水平综合作用对蒙古栎幼苗的生物量积累无促进作用。因此, 在未来气候变化情况下, 土壤中充足的氮供给可能将促进蒙古栎幼苗的生长, 增加其天然更新潜力, 并增加其碳库容。  相似文献   

19.
赵甍  王秀伟  毛子军 《植物研究》2006,26(3):337-341
叶片中叶绿素含量在光合作用中的光吸收、传递和转换过程中起到重要作用。为了预测未来大气CO2浓度升高并伴随温度上升的情况下,植物在不同的氮素营养水平下光合能力的变化,做了在3种氮素水平下(15mmol·L-1 N,7.5mmol·L-1 N和不施氮)CO2倍增和温度升高4℃对蒙古栎一年生幼苗叶片中叶绿素含量的影响的实验。结果表明:氮素水平对叶绿素含量影响显著,在CO2倍增(700μmol·mol-1)、高温(+4℃)和正常温度、大气CO2浓度条件下,高氮素水平下的叶绿素含量明显高于正常氮素水平和不施氮;CO2浓度和温度对叶绿素含量的影响受到氮素的制约:在高氮的条件下CO2浓度倍增促进叶绿素a、b的合成,而且对叶绿素b合成的促进尤为显著;而温度升高4℃能够促进叶绿素a的合成,但是对叶绿素b含量的影响不显著。在正常氮素条件下叶绿素a、叶绿素b及总量各个处理间的差异均不显著;在不施氮的条件下,CO2倍增和升高适当的温度在一定的程度上可以促进叶绿素a的合成,不能同时保证叶绿素b的合成。CO2浓度升高明显导致蒙古栎幼苗对氮素水平的需求也增加,高温条件下的蒙古栎幼苗也在一定程度上增加了对氮素的需求。  相似文献   

20.
青藏高原高寒湿地生态系统CO2通量   总被引:3,自引:0,他引:3  
依据涡度相关系统连续观测的2005年CO2通量数据,对青藏高原东北隅的高寒湿地生态系统源/汇功能及其部分环境影响因素进行了分析。结果表明,高寒湿地生态系统为明显的碳源,在植物生长季(5~9月份)吸收230.16 gCO2•m-2,非生长季(1~4月份及10~12月份)释放546.18 gCO2•m-2,其中净排放最高在5月份,为181.49 gCO2•m-2,净吸收最高在8月份,为189.69 gCO2•m-2,年释放量为316.02 gCO2•m-2。在平均日变化中,最大吸收值出现在7月份12:00,为(0.45±0.0012) mgCO2•m-2•s-1,最大排放速率出现在8月份0:00,为(0.22±0.0090) mgCO2•m-2•s-1。生长季中6~9月份表现为明显的单峰型日变化,非生长季的变化幅度较小。净生态系统交换量(NEE)和生态系统总初级生产力(GPP)与气温、空气水气饱和亏和地表反射率等环境因素呈现相似的相关性,与地上生物量和群落叶面积指数则为线性负相关,生态系统呼吸(Res)则与上述因子的相关性呈现相反的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号