首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
根据大肠杆菌Ee株主要免疫原性片段SLT-ⅡeB的基因序列,设计合成两对引物,利用谷胱甘肽-S-转移酶(GST)表达系统将三拷贝SLT-ⅡeB的融合基因串联于GST下游,并在大肠杆菌中成功表达,获得了大小约为45kDa融合蛋白GST-3B,表达产物以包涵体形式产生,Western blot检测证实表达的融合蛋白具有良好的生物学活性;结合抑制试验表明,与单拷贝融合表达蛋白GST-B相比,GST-3B与水肿毒素受体的亲和力更强。GST-3B及GST-B与等量弗氏不完全佐剂乳化后制成亚单位疫苗,间隔两周两次皮下免疫小鼠。结果GST-3B疫苗组产生的抗体水平明显高于GST-B疫苗组,但两种疫苗组的抗体消长趋势相同。二免后两周用5×LD50的Ee株大肠杆菌进行腹腔攻毒。GST-3B疫苗组保护率为60.0%(6/10),明显优于GST-B疫苗组40.0%(4/10)。研究结果表明GST-3B具有良好的生物学活性和免疫原性,可以作为疫苗添加成分,显示了良好的应用前景。  相似文献   

2.
ApxI外毒素是猪胸膜肺炎放线杆菌(APP)最重要的毒力因子,为了研究其N端多肽的免疫原性,分别将apxIA基因的全长编码区(apxIA,3146bp)及其5′端1140bp的片段(apxIA5)克隆到原核表达载体pET28a,经IPTG诱导后在大肠杆菌中实现了表达,表达产物ApxIA和ApxIAN均以包涵体的形式存在,Westernblot检测证实两种表达产物均具有免疫反应性。将纯化的重组蛋白(rApxIA和rApxIAN)和提取的天然毒素ApxI(nApxI)分别经腹腔免疫BALBc小鼠,于免疫前、免疫2周和4周后分别检测了ELISA抗体和毒素中和抗体水平,结果表明,rApxIAN免疫组的ELISA抗体显著低于rApxIA免疫组和nApxI免疫组,但rApxIAN免疫组血清中和试验中测定的溶血素单位与rApxIA及天然nApxI免疫组没有显著差异。第二次免疫2周后,用1个LD50的APP血清1型J101株和2型标准菌株攻击试验动物,rApxIAN免疫组对血清1型和2型菌株的保护率分别为80%和100%。  相似文献   

3.
α-银环蛇毒素基因的克隆及其非融合型原核表达研究   总被引:4,自引:0,他引:4  
根据文献报道α-银环蛇毒素的氨基酸序列推导出其DNA序列,设计并人工合成两两互补的14条寡核苷酸片段。经片段延伸、PCR、克隆,成功构建α-银环蛇毒素基因克隆质粒;质粒经XbaI和EcoRI双酶切回收后连接于表达载体pET28a(+)中,分别转化BL21(DE3)、BL21(DE3)Codonplus、BL21(DE3)plysS进行诱导表达,表达产物经Tris/tricine系统进行SDS-PAGE分析。结果表明:该基因已在大肠杆菌BL21(DE3)宿主菌中进行了非融合表达,其表达量占细菌总蛋白的11.98%,主要以包涵体形式存在;同时对表达条件进行了优化,其表达量可达16.28%。经Westernblot分析,在大约8kDa处出现明显的目的带,与预计蛋白分子量大小一致,说明表达产物与天然α-银环蛇毒素具有相似的免疫原性。表达产物纯化、复性后经动物毒性试验表明:表达的α-银环蛇毒素蛋白具有生物学活性,小鼠腹腔注射其LD50约为1.28μg/g。  相似文献   

4.
目的:利用SUMO标签构建人TNFα原核表达载体,通过表达及纯化获得重组蛋白,为深入研究和利用人TNFα奠定基础。方法:利用PCR技术,从质粒pET32a-hTNFα中扩增出人TNFα成熟肽编码序列,并在其上游添加SUMO标签,与原核表达载体pET28a连接,构建表达质粒pET28a-SUMO-hTNFα。在BL21(DE3)工程菌中表达融合蛋白,经Ni-NTA纯化体系纯化,切除SUMO标签,纯化获得hTNFα成熟蛋白。CCK-8法检测TNFα对L929细胞的细胞毒性,以测定TNFα的生物学活性。结果:成功构建pET28a-SUMO-hTNFα原核表达质粒,酶切鉴定和测序分析与预期结果完全一致。在BL21(DE3)工程菌中实现了融合蛋白的可溶性表达。经纯化、水解酶切除标签及再次纯化获得hTNFα成熟肽。CCK-8法检测得所制备的TNFα蛋白ED50约为12.8μg/ml。结论:成功构建原核表达载体pET28a-SUMO-hTNFα,经表达、纯化、酶切及再纯化,获得有生物活性的hTNFα蛋白,为深入研究和利用hTNFα奠定基础。  相似文献   

5.
为了筛选出免疫原性最佳的基因Ⅰ型乙型脑炎病毒亚单位疫苗候选抗原,将基因Ⅰ型JEVGS株的prMEIII融合基因、polytope复合表位基因和prMEIII-polytope融合基因分别克隆构建到原核表达载体pET-30a上,经诱导表达纯化获得重组蛋白。将制备的重组蛋白免疫小鼠,通过ELISA监测体液免疫反应、通过噬斑减少中和试验滴定中和抗体滴度、通过细胞因子表达丰度和淋巴细胞增殖实验分析细胞介导的免疫反应,比较分析制备的乙型脑炎病毒亚单位疫苗候选抗原的免疫原性。结果表明:获得的分子量分别为35kDa(prMEIII)、28kDa(polytope复合表位抗原)和57 kDa (prMEIII-polytope)的重组蛋白均能诱导免疫小鼠产生较强的体液免疫和细胞免疫反应。与prMEIII-polytope和polytope重组蛋白免疫组相比,prMEIII蛋白可诱导免疫小鼠产生更高的IL-2和IFN-γ表达丰度和淋巴细胞增殖水平(P0.05)。prMEIII蛋白免疫小鼠诱导产生的中和抗体滴度接近于商品化乙脑减毒疫苗SA14-14-2 (P0.05)。上述研究结果表明,prMEIII重组蛋白可以作为乙型脑炎病毒亚单位疫苗的备选蛋白。  相似文献   

6.
【目的】本研究利用Asd+平衡致死系统构建表达巴氏杆菌毒素(Pasteurella multocida toxin,PMT)的重组猪霍乱沙门氏菌株,并对重组菌株的生物学特性进行比较研究。【方法和结果】通过基因克隆的方法构建表达PMT的重组质粒pYA-PmtC,再将其电转化减毒猪霍乱沙门氏菌C500的asd基因缺失株C501,构建口服活疫苗菌株C501(pYA-PmtC)。研究结果表明重组菌株C501(pYA-PmtC)的生化特性、血清型和生长速度与亲本菌株C500一致;在没有选择压力的条件下,C501(pYA-PmtC)能够稳定遗传重组质粒及其外源基因片段,并能稳定、高效、分泌性表达30.5kDa的外源保护性抗原rPmtC。C501(pYA-PmtC)腹腔感染BALB/c小鼠的LD50为8.5×106CFU,毒力稍低于C500(LD50为4.4×106CFU);口服接种C501(pYA-PmtC)和C500的所有仔猪未见任何发病症状,两者没有显著差别。【结论】本研究利用Asd+平衡致死系统的原理构建表达T+Pm保护性抗原重组猪霍乱沙门氏菌弱毒菌株C501(pYA-PmtC),为进一步开发猪萎缩性鼻炎-副伤寒的双价基因工程疫苗奠定基础。  相似文献   

7.
本研究旨在构建重组干酪乳杆菌pLA-Newcastlediseasevirus (NDV)-F/Lactobacillus casei,获得表达产物,并探讨其免疫效果。利用PCR扩增携带部分主要抗原表位的NDV F基因,与穿梭质粒pLA连接转化至大肠杆菌BL21 (DE3)中,筛选阳性重组质粒,将其电转化至干酪乳杆菌中,构建重组干酪乳杆菌pLA-NDV-F/L. casei,应用PCR鉴定阳性菌株,Western blotting鉴定重组菌反应原性,间接免疫荧光、流式细胞术和激光共聚焦检测蛋白表达情况。试验选用14日龄雏鸡,各组免疫方式为口服+滴鼻。设立pLA-NDV-F/L. casei两次免疫组和三次免疫组、弱毒疫苗组、 pLA/L.casei、未攻毒PBS组和攻毒PBS组。间接ELISA方法检测雏鸡血清IgG、肠道、鼻腔、肺脏中sIgA抗体效价,评价试验组雏鸡攻毒保护率。结果表明,有94.10%的重组菌表达了F蛋白,且高效表达在干酪乳杆菌细胞表面,蛋白大小为62kDa,并能与抗NDV阳性血清特异性结合。各免疫组anti-F IgG和s Ig A抗体水平显著高于对照组,p LA-NDV-F/L. casei三次免疫组抗体持续时间比两次免疫组延长28 d,抗体峰值没有显著差异。免疫pLA-NDV-F/L. casei三次、两次、弱毒疫苗、pLA/L. casei和PBS的攻击保护率分别为80%、80%、90%、0%和0%。因此,利用干酪乳杆菌表达体系成功表达了携带部分抗原表位的NDVF基因,具备良好的反应原性和免疫原性,可诱导机体产生保护性免疫应答。  相似文献   

8.
制备小鼠IL-38蛋白,并检验其生物学活性。对IL-38的基因进行密码子优化并化学合成优化后的基因,将其插入原核表达载体pET28a(+),构建pET28a-IL-38质粒,转化至大肠埃希菌BL21(DE3),经IPTG诱导表达,镍亲和层析法纯化制备IL-38蛋白;分别用IL-36γ和IL-38干预小鼠肠系膜淋巴结(mesenteric lymph node,MLN)细胞,ELISA检测各组Th1细胞因子的分泌水平。经SDS-PAGE分析获得纯度高达95%的IL-38蛋白。相对于对照组,IL-38处理组Th1细胞因子分泌水平明显降低(P0.05)。成功制备小鼠IL-38蛋白,证实了IL-38对IL-36γ刺激的MLN细胞炎性反应具有负向调控作用,为进一步研究IL-38在炎症性疾病中的免疫调节功能提供参考。  相似文献   

9.
蔺艳君  董彬 《生物工程学报》2019,35(6):1088-1096
为了研究抗菌肽β-防御素130的生物学活性和实现大规模制备,通过改良其分子结构,构建表达载体pET28a-3×β-defensin130,利用大肠杆菌BL21 (DE3)作为宿主细胞诱导表达后为水溶性蛋白。对纯化后抗菌肽进行抑菌实验、稳定性实验、MTT实验和溶血性实验确定其生物活性。最终成功制备出25 kDa的重组蛋白,对金黄色葡萄球菌(ATCC25923)(45μg/mL)和单增李斯特菌(ATCC221633)(80μg/mL)等革兰氏阴性和阳性菌都表现出极强的抗菌活性,且其抗菌活性不受温度、pH值和蛋白酶消化等影响,MTT细胞毒性实验显示其对HEK293细胞无毒性且对兔源红细胞具有极低的溶血性。这将为新型抗菌肽的开发提供理论基础并推动抗生素替代产业快速发展。  相似文献   

10.
目的 利用生物信息学软件评价幽门螺杆菌(Helicobacter pylori)多价表位疫苗CWAE的抗原结构,经原核表达获得高纯度CWAE蛋白,进而鉴定多价表位疫苗CWAE的免疫学性质。方法 通过生物信息学软件分析H. pylori多价表位疫苗CWAE的抗原结构;用人工合成的H. pylori多价表位肽融合基因WAE替换重组质粒pET28a-CUE中的UE基因,构建重组质粒pET28a-CWAE。然后,将pET28a-CWAE转入大肠杆菌BL21(DE3)中,经IPTG诱导表达,并通过Ni-NTP镍离子亲和层析纯化抗原蛋白CWAE;利用GM1-ELISA鉴定CWAE中CTB组分的黏膜免疫佐剂活性。最后,通过ELISA和小鼠脾脏淋巴细胞增殖实验检测CWAE激发BALB/c小鼠产生抗H. pylori抗体体液免疫和淋巴细胞免疫应答的能力。结果 通过生物信息学软件证实H. pylori多价表位疫苗CWAE具有科学合理的结构;重组表达质粒pET28a-CWAE经PCR、双酶切和基因测序鉴定,融合基因CWAE与设计序列完全一致;重组基因工程菌株pET28a-CWAE/BL21(DE3)经IPTG诱导表达,抗原蛋白CWAE主要以包涵体形式存在,经Ni-NTP镍离子亲和层析纯化,纯度约达93.2%;GM1-ELISA实验证实,CWAE中CTB组分依旧保持有较好的黏膜佐剂活性;ELISA结果证实CWAE能够激发BALB/c小鼠产生H. pylori特异性抗体,而小鼠脾脏淋巴细胞增殖实验进一步证实CWAE能够激发针对H. pylori多种致病因子的淋巴细胞免疫反应。结论 H. pylori多价表位疫苗CWAE具有科学合理的抗原结构,经原核表达可获得高纯度抗原蛋白,能够激发BALB/c小鼠产生H. pylori特异性抗体体液免疫和淋巴细胞免疫应答。为研发防治H. pylori感染的多价表位疫苗奠定实验基础。  相似文献   

11.
Pasteurella multocida serogroup D strain, which produces P. multocida toxin (PMT), is a widespread and harmful pathogen of respiratory diseases such as pneumonia and progressive atrophic rhinitis (PAR) in swine. Vaccination has been considered the most desirable and effective approach for controlling the diseases caused by toxigenic P. multocida. To investigate the antigenicity and immunogenicity of partial fragments of recombinant PMT, recombinant proteins of the N-terminal (PMT-A), middle (PMT-B), Cterminal (PMT-C), and middle-C-terminal (PMT2.3) regions of PMT were successfully produced in an Escherichia coli expression system. The molecular masses of PMT-A, PMT-B, PMT-C, and PMT2.3 were ca. 53, 55, 35, and 84 kDa, respectively, purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. All the recombinant proteins except for PMT-A showed immune responses to antisera obtained from a swine showing symptoms of PAR. Moreover, high titers of PMT-specific antibodies were raised from mice immunized with each of the recombinant proteins; however, the immunoreactivities of the antibodies to authentic PMT and heat-inactivated whole bacteria were different, respectively. In the protection study, the highest protection against homologous challenge was shown in the case of PMT2.3; relatively poor protections occurred for the other PMT fragments.  相似文献   

12.
Pasteurella multocida, a Gram-negative facultative anaerobic bacterium, is a causative animal pathogen in porcine atrophic rhinitis and avian fowl cholera. For the development of recombinant subunit vaccine against P. multocida, we cloned and analyzed the gene for outer membrane protein H (ompH) from a native strain of Pasteurella multocida in Korea. The OmpH had significant similarity in both primary and secondary structure with those of other serotypes. The full-length, and three short fragments of ompH were expressed in E. coli and the recombinant OmpH proteins were purified, respectively. The recombinant OmpH proteins were antigenic and detectable with antisera produced by either immunization of commercial vaccine for respiratory disease or formalin-killed cell. Antibodies raised against the full-length OmpH provided strong protection against P. multocida, however, three short fragments of recombinant OmpHs, respectively, showed slightly lower protection in mice challenge. The recombinant OmpH might be a useful vaccine candidate antigen for P. multocida.  相似文献   

13.
Toxigenic strains of Pasteurella multocida produce the 147 kDa protein Pasteurella multocida toxin (PMT) which is responsible for the osteoclastic bone resorption in progressive atrophic rhinitis in pigs and induces such resorption in all experimental animals tested so far. In the present study we have carried out immunocytochemistry on formaldehyde- and glutaraldehyde-fixed ultracryocut P. multocida using a pool of monoclonal antibodies against different epitopes on PMT as the first layer and affinity purified rabbit anti-mouse IgG as the second layer. Goat anti-rabbit IgG conjugated with 5 nm gold particles was used as marker. The gold particles were silver-enhanced prior to examination in the transmission electron microscope. Whole bacteria were also immunostained after fixation and critical point drying and examined by scanning transmission electron microscopy. The results showed that PMT was located in the cytoplasm of P. multocida. PMT could not be detected on intact, undamaged P. multocida by scanning electron microscopy. Neither pili nor flagella could be detected on the surface of the negatively stained P. multocida strains investigated. PMT has a series of characteristics encompassed in the definition of an exotoxin. However, that PMT was not secreted by living intact P. multocida is unexpected for an exotoxin.  相似文献   

14.
Pasteurella multocida is an important veterinary and opportunistic human pathogen. In particular, strains of P. multocida serogroup D cause progressive atrophic rhinitis, and produce a potent, intracellular, mitogenic toxin known as P. multocida toxin (PMT), which is encoded by the toxA gene. To further investigate the toxigenic and pathogenic effects of PMT, a toxA-deleted mutant was developed by homologous gene recombination. When administrated to mice, the toxigenicity of the toxA mutant P. multocida was drastically reduced, suggesting that the PMT contributes the major part of the toxigenicity of P. multocida. Similar results were obtained in a subsequent experiment, while high mortalities were observed when toxA(+) P. multocida bacterial culture or culture lysate were administrated. Mice immunized with toxA(-) P. multocida were not protected (none survived) following challenge with toxA(+) P. multocida or bacterial culture lysate (toxin). These results suggest that the toxigenicity of P. multocida is mainly derived from PMT.  相似文献   

15.
Elaboration of heat-labile toxin (PMT) is an important virulence factor in some isolates of Pasteurella multocida from rabbits. Previously, we reported that immunization with inactivated PMT (IPMT) stimulated protective immunity to challenges from PMT. To test the hypothesis that immunization with a commercial swine vaccine containing IPMT stimulates similar protective immunity, groups of five rabbits were inoculated twice intramuscularly (i.m.), 10 days apart, with 0.5 ml of sterile saline or a commercial swine P. multocida bacterin-toxoid (BT). In addition, a group was inoculated intranasally with 5 microg of IPMT. Serum and nasal lavage samples were taken on days 0, 7, 14 and 21 after initial immunization and assayed by ELISA for anti-PMT antibody. Serum IgG and nasal lavage IgA were detectable by day 14 in BT and IPMT-immunized rabbits, but not in the saline controls. Groups of similarly inoculated rabbits were then challenged intranasally with 28 microg of PMT 21 days after initial immunization, and necropsied 7 days later, along with control challenged and non-challenged rabbits. Histological lesion severity was graded on a numerical scale. Non-immunized and saline, challenged controls developed more severe pneumonia, pleuritis, nasal turbinate atrophy and testicular atrophy than IPMT and BT-immunized rabbits. The results confirm the hypothesis that immunization with a commercial swine P. multocida BT confers protective immunity in rabbits against challenges from PMT.  相似文献   

16.
The immunological role of the Pasteurella multocida toxin (PMT) in mice was examined using a PMT mutant strain. After a nasal inoculation, the mutant strain failed to induce interstitial pneumonia. Moreover, PMT had no significant effect on the populations of CD4+, CD8+, CD3+, and CD19+ immunocytes in blood or on the populations of CD4+ and CD8+ splenocytes (P<0.01). However, there was a significant increase in the total number of cells in the BAL samples obtained from the wild-type P. multocida-inoculated mice. On the other hand, the level of IL-1 expression decreased when the macrophages from the bronchio-alveolar lavage were stimulated with PMT. Overall, PMT appears to play some role (stimulating and/or inhibiting) in the immunological responses but further studies will be required to confirm this.  相似文献   

17.
Abstract We developed a minimal medium supporting the growth of both toxigenic and nontoxigenic strains of Pasteurella multocida to optical densities of > 0.5 (600 nm ). P. multocida P1059 (ATCC 15742), one of a number of strains which can cause fowl cholera, was used as the model strain in this study. The medium was composed of 17 ingredients including cysteine, glutamic acid, leucine, methionine, inorganic salts, nicotinamide, pantothenate, thiamine, and an energy source. Leucine was not required for growth but was stimulatory, and thiamine could be replaced by adenine. An additional 46 strains of P. multocida were tested, and 40 out of 46 (87%) strains grew as well as strain P1059 through a minimum of 10 serial transfers. P. multocida toxin (PMT) was produced when cells of a known toxigenic strain (P4261) were cultivated in the minimal medium. No growth of Pasteurella haemolytica or Pasteurella trehalosi strains was observed in this minimal medium.  相似文献   

18.
The present study was conducted to investigate the role of iron-regulated outer membrane proteins (IROMP) of Pasteurella multocida B:2 in mice as potential immunogens. Outer membrane proteins extracted from P. multocida B:2 grown under normal (OMP) and iron-deficient (IROMP) conditions were subjected to discontinuous SDS-PAGE. Nine polypeptides of MW ranging from 85.1 to 16.7 kDa from OMP preparations and two additional polypeptides of MW 95.4 and 89.1 kDa from IROMP preparations were observed with bands of MW 37.2 and 34.7 kDa as major proteins. Mice were immunized twice with OMP, IROMP-enriched fractions and whole cell lysate (WCL) via subcutaneous route at day 0 and 21. Antibody titers were determined from sera collected at weekly interval and protection was studied against challenge using 10(2) cfu of P. multocida two weeks after secondary immunization via intranasal and subcutaneous routes. IROMP and OMP immunized mice provoked significant antibody responses and IROMP induced higher antibody responses. IROMP and OMP immunized mice showed protection (100%) upon intranasal challenge and a protection (84%) following subcutaneous challenge as compared to high mortality (84%) in control mice. These results indicate that OMP enriched with IROMP fractions can be superior means of immunization.  相似文献   

19.
Wilson BA  Ho M 《The FEBS journal》2011,278(23):4616-4632
The mitogenic toxin from Pasteurella multocida (PMT) is a member of the dermonecrotic toxin family, which includes toxins from Bordetella, Escherichia coli and Yersinia. Members of the dermonecrotic toxin family modulate G-protein targets in host cells through selective deamidation and/or transglutamination of a critical active site Gln residue in the G-protein target, which results in the activation of intrinsic GTPase activity. Structural and biochemical data point to the uniqueness of PMT among these toxins in its structure and action. Whereas the other dermonecrotic toxins act on small Rho GTPases, PMT acts on the α subunits of heterotrimeric G(q) -, G(i) - and G(12/13) -protein families. To date, experimental evidence supports a model in which PMT potently stimulates various mitogenic and survival pathways through the activation of G(q) and G(12/13) signaling, ultimately leading to cellular proliferation, whilst strongly inhibiting pathways involved in cellular differentiation through the activation of G(i) signaling. The resulting cellular outcomes account for the global physiological effects observed during infection with toxinogenic P. multocida, and hint at potential long-term sequelae that may result from PMT exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号