首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
害虫综合治理(Integratedpestmanagement,IPM)中的"Integrated"除了综合的意思,其实更多表述的是"整合"。在进行害虫防治时,不能将各个措施简单地综合应用,而应在充分了解各种措施之间相互作用的基础上,将其整合成一个系统(整体),更好地服务于害虫管理。本文基于国内外害虫管理的进展与实践,论述了近年来害虫管理发展的4种理念更新、4项策略演变和3大技术革新,提出了害虫管理优先方案5个步骤,指出了整合过程的5个层次及11个科学问题,强调害虫管理应本着"预防为主、生态优先、综合治理"的植保方针,秉持"生态、有效、经济、简便"技术原则,重点从综合走向整合,构建我国不同区域特色的害虫管理生态工程,开展害虫整合治理,达到经济可行、生态可持续、社会可接受的目的。  相似文献   

2.
综合防治是根据同一农业生态中各种因素,包括农作物、害虫、天敌和栽培制度等之间的有机联系和互相制约的辩证关系而制定的一种控制或消灭害虫的系统措施。它是在一定条件下,站在生态学观点,把各种有效的防治方法有机的结合在一起,以达到控制害虫为害到最低程度,保证农作物的稳产高产。我国植物保护事业发展到现阶段,我们认为提出“预防为主,综合防治”的方针是正确的。  相似文献   

3.
论害虫生态调控策略与技术   总被引:1,自引:0,他引:1  
害虫生态调控作为害虫管理的一种"高级"策略,主要基于"预防为主,生态优先,整合治理,精准施策"的原则,通过调节与控制两个相辅相成的过程,整合包括生态调控技术、现代生物技术、农业防治、生物防治、理化诱控技术以及合理的化学防治等手段,构建"经济、简便、有效"的生态工程技术体系,将害虫控制在生态经济阈值水平之下。同时,它也是害虫管理的一种技术,包括景观生态设计、功能植物种植、推拉技术、生态自杀技术、作物合理布局、健康作物环境调控技术等措施。本文重点阐明了作为害虫管理策略与害虫管理技术"二重性"的害虫生态调控概念,明确了害虫生态调控的4项基本原理、6大独特技术和4个指导思想,比较了害虫生态调控策略与害虫综合治理策略的特征,解析了害虫生态调控技术与农业防治、生物防治的区别和联系,指出了未来害虫生态调控发展的趋势。  相似文献   

4.
害虫研究与防治中的生态学尺度   总被引:8,自引:2,他引:6  
尺度已成为生态学上的一个重要概念和研究热点 ,但在害虫防治中尚未引起足够的重视 .本文从生态学尺度概念和等级理论出发 ,分析了不同尺度水平上害虫研究的方法、内容、关键问题及研究成果对害虫防治的意义 .在对害虫发生为害特征、害虫种群动力学原理、农业生态系统结构的演变、害虫防治的社会化、害虫防治技术的发展等因素的分析的基础上 ,指出害虫防治策略在时空尺度上拓展的趋势和必要性 .  相似文献   

5.
随着DNA测序技术的不断更新和生物信息学的快速发展,昆虫基因组学的研究与日俱增,提高了人们对种群遗传学和进化生态学的理解和认识,促进了对重要农业害虫的适应性和致害机理的研究,为安全、有效、可持续地开展害虫综合治理提供了新思路和新手段。近两年来,全球发布的昆虫基因组数量每年可达30个。在遗传学、生态学和进化论等生命科学基本原理和方法的指导下,基因组学的研究为揭示害虫遗传变异的内在机制、生态适应性策略和种群变动规律提供了重要的数据和信息资源,同时催生了一系列害虫治理新技术和新方法的研发与应用。为了进一步促进和加强基因组时代的害虫治理研究,拓展该领域研究的广度与深度,本文就昆虫基因组的研究,昆虫与植物协同进化模式及其互作机理,昆虫免疫和抗药性分子机制,以及害虫防治新技术等方面进行了综述,旨在为了解基因组时代害虫治理的研究进展及前景提供参考,对进一步改进害虫生态控制的策略和措施也具有指导意义。  相似文献   

6.
罗志义 《生态学报》1982,2(3):255-266
随着害虫的综合防治的发展,生态学中的许多基本概念越来越多地被运用到农业害虫防治系统中去,指导农业害虫防治工作的发展。早在六十年代初我国马世骏等运用生态观点对大田作物群落结构的特点、分类、影响大田作物群落更替的因素及控制大田作物害虫种群的途径进行过论述(马世骏,1962)到1976年又结合农业害虫的综合防治途径对农作物的生态系统结构和物质循环进行详细分析(马世骏,1976)1978年结合农业害虫测报展望对害虫种群结构及其多样性作了概括(马世骏,1978)。朱弘复在1978年对有害生物的治理的战略与  相似文献   

7.
<正> 1980年12月江苏省昆虫学会在南京召开了一次害虫综合防治讨论会,讨论了以下七个问题。 一、综合防治的概念 认为1965年联合国粮农组织在罗马召开害虫综合防治专家小组会议所提出的定义:“综合防治是一种害虫管理系统,按照害虫种类的种群动态和它相关的环境关系,利用适当的技术和方法,使尽可能地互不矛盾,保持害虫种群处在经济受害水平之下。”还是值得参考的。它的内涵意义包括三个观点:一是生态学的观点,以建立最优的农业生态系统为出发,不断促进和培养环境资源,协调作物、害虫、天敌三者之间与周围非生物环境间的相互关系,将害虫种群数量压低在一定的经济受害水平以下,确保农业高产稳产,增产增收,而不是其相反。二是经济学的观点,在生态学规律的基础上,从总体出发,有计划地、协调地选择运用必  相似文献   

8.
论害虫种群的生态控制   总被引:117,自引:5,他引:112  
丁岩钦 《生态学报》1993,13(2):99-106
本文根据保护生物圈与经济持续发展的要求,提出害虫种群的“生态控制’对策,以代替现在国内外采用的“综合防治”。文中根据生态学与经济学理论,不仅提出了“生态控制”应遵循的经济学与生态学的管理原则,并且提出了“生态控制”的指导思想与方法论,以及它的目标函数、约束条件与主要对策。进而根据国内外本领域的科技发展动态分析与生产实际需要,论述了本种对策在生产中的可行性与重要性。  相似文献   

9.
可持续生态学   总被引:8,自引:5,他引:3  
吕永龙  王一超  苑晶晶  贺桂珍 《生态学报》2019,39(10):3401-3415
可持续生态学系用生态学原理和方法解决自然与社会经济协调发展问题,或者说生态学不断将人类及其社会经济活动纳入研究范畴而形成的自然科学与社会科学的交叉学科。40年来,我国在可持续生态学研究和实践领域取得了丰硕的成果,一是提出了"社会-经济-自然"复合生态系统理论;二是构建了适应中国国情的可持续发展评价指标体系;三是推进实施了国家可持续发展战略,并在不同时空尺度进行了试点示范;四是将可持续发展的区域生态安全格局和生态风险管理理论与方法应用于城市与区域发展规划中,并利用生态补偿机制推进跨域的生态安全格局建设;五是为国家生态文明建设规划纲要的出台提供了重要的科学支撑,有力地推进了生态文明建设战略的实施;六是系统地研究了全球气候变化对中国生态系统的影响,科学评估了气候变化的现状、趋势及其影响,提出了气候变化的生态适应对策;七是不断推进国家和地方层面的生态省、生态市、生态县建设,创建了不同层次和规模的可持续发展实验区、国家可持续发展议程创新示范区、生态农业试点示范县、生态工业示范园区等。本文从宏观生态学与可持续发展、生态城市与可持续发展、生态产业与可持续发展三个方面评述可持续性生态学的研究进展。可持续生态学的重点研究内容随着时代发展而不断更新,生态文明建设、生态安全格局构建、落实联合国2030可持续发展目标、应对全球环境变化、新型城市化和工业化对生态系统的影响等是当前和未来一段时间的研究热点。  相似文献   

10.
害虫区域性生态调控的理论、方法及实践   总被引:13,自引:2,他引:11  
戈峰 《昆虫知识》2001,38(5):337-341
本文在分析害虫生态调控的生态学基础上 ,论述了害虫区域性生态调控的原理与方法 ,并以华北棉田害虫管理实践为例 ,介绍了害虫区域性生态调控的实施过程  相似文献   

11.
Worldwide, the theory and practice of agricultural extension system have been dominated for almost half a century by Rogers' "diffusion of innovation theory". In particular, the success of integrated pest management (IPM) extension programs depends on the effectiveness of IPM information diffusion from trained farmers to other farmers, an important assumption which underpins funding from development organizations. Here we developed an innovative approach through an agent-based model (ABM) combining social (diffusion theory) and biological (pest population dynamics) models to study the role of cooperation among small-scale farmers to share IPM information for controlling an invasive pest. The model was implemented with field data, including learning processes and control efficiency, from large scale surveys in the Ecuadorian Andes. Our results predict that although cooperation had short-term costs for individual farmers, it paid in the long run as it decreased pest infestation at the community scale. However, the slow learning process placed restrictions on the knowledge that could be generated within farmer communities over time, giving rise to natural lags in IPM diffusion and applications. We further showed that if individuals learn from others about the benefits of early prevention of new pests, then educational effort may have a sustainable long-run impact. Consistent with models of information diffusion theory, our results demonstrate how an integrated approach combining ecological and social systems would help better predict the success of IPM programs. This approach has potential beyond pest management as it could be applied to any resource management program seeking to spread innovations across populations.  相似文献   

12.
害虫生态调控的原理与方法   总被引:44,自引:2,他引:42  
戈峰 《生态学杂志》1998,17(2):38-42
害虫生态调控的原理与方法戈峰(中国科学院动物研究所农业虫鼠害综合治理国家重点实验室,北京100080)ThePrinciplesandMethodsofEcologicalRegulationandManagementofPests.GeFeng(I...  相似文献   

13.
我国农业害虫综合防治研究现状与展望   总被引:9,自引:0,他引:9  
害虫综合防治作为农业生产的一项重要策略,在农业可持续发展中具有举足轻重的作用。近年来,针对我国害虫防治所存在的技术需求,科技部等部门先后通过973计划、863计划、科技支撑计划和农业行业专项等对重要害虫防治研究立项支持。通过这些项目的实施,我国建成了一支由国家和省级科研单位和大学组成的专业科研队伍和研究平台,对害虫监测预警技术、基于生物多样性保护利用的生态调控技术、害虫生物防治技术、化学防治技术、抗虫转基因作物利用技术等方面的研究取得了一系列的重要进展,研究建立了棉花、水稻、玉米、小麦和蔬菜等作物重要害虫的综合防治技术体系,并在农业生产中发挥了重要作用。以基因工程和信息技术为代表的第二次农业技术革命的到来,推动了害虫综合防治的理论发展,为害虫综合防治技术的广泛应用提供了新的机遇。地理信息系统、全球定位系统等信息技术和计算机网络技术的应用,提高了对害虫种群监测和预警的能力和水平,转基因抗虫作物的商业化种植等技术的应用显著增强了对害虫种群的区域性调控效率。针对产业结构调整和全球气候变化所带来的害虫新问题,进一步发展IPM新理论与新技术将成为我国农业昆虫学研究的重要方向之一。  相似文献   

14.
Integrated pest management (IPM) is an interdisciplinary science dealing with the development, evaluation, and implementation of pest control strategies that result in favorable economic, ecologic, and sociologic consequences. IPM has received considerable attention during the past few years, and this has led to recommendations directly related to the growth of the science of hematology. This report describes the current state of IPM in relation to the role of hematology, with special emphasis on scientific personnel requirements. All current indications are that IPM will continue to grow, very likely at an increased rate. This will place additional research, extension, and teaching demands on current hematology programs and should result in an expended resource base for nematology.  相似文献   

15.
茶园害虫生态控制若干问题的探讨   总被引:8,自引:0,他引:8  
茶园害虫生态控制是一种较新的控制有害生物的策略。本文讨论了茶园害虫生态控制的特点、原理和方法,认为茶园害虫生态控制是在深入了解茶园生态系统内有关因素的特性、动态、以及相关联系的情况下,运用有效的技术和手段,创造不利于害虫而有利于茶叶生产的条件,充分发挥生态系统中各种害虫调控因子的作用,使茶园害虫种群密度在生态系统内长期处在不足以引起经济损失的水平,使整个茶园生态系统高效、低耗和持续发展。同时详细分析了茶园各种生态因子在生态控制中的作用,并提出了今后茶园害虫生态控制的研究方向和工作重点。  相似文献   

16.
浅谈害虫成虫防治技术   总被引:7,自引:2,他引:5  
目前害虫防治中的一系列问题如害虫幼虫抗药性上升、害虫天敌被大量杀伤、人畜中毒、环境污染与土壤农药残毒日趋严重 ,使以成虫为目标虫态或防治对象而开展的成虫防治策略被广为接受并广泛应用。本文对目前使用的各种成虫防治技术体系进行了概括 ,并列举了成虫防治技术的特点和优点 ,以及进行成虫防治的许多实例。其中信息化合物防治和遗传防治的飞速发展为成虫防治的应用提供了多种途径。  相似文献   

17.
Integration in pest management may be conceived at three distinct levels: (a) integration of tactics, (b) integration of the effects of multiple pest stresses, and (c) systems integration. The ecological basis of each is found in population, community or ecosystems processes, respectively. Most current IPM programs are attempts to integrate control tactics into management strategies and therefore only require knowledge of species and population ecology. Further advancement of IPM will require higher levels of integration but the experimental basis of and information on community and ecosystems processes are insufficient to permit reaching these levels. Mostly entomological examples in the grain legumes are used to demonstrate achievements of IPM at level a (tactical integration), and the difficulties involved in advancing towards integration of multiple pest stresses and systems integration (levels b and c). General requisites towards the design and implementation of IPM programs are outlined.  相似文献   

18.
Myths, models and mitigation of resistance to pesticides   总被引:3,自引:0,他引:3  
Resistance to pesticides in arthropod pests is a significant economic, ecological and public health problem. Although extensive research has been conducted on diverse aspects of pesticide resistance and we have learned a great deal during the past 50 years, to some degree the discussion about ''resistance management'' has been based on ''myths''. One myth involves the belief that we can manage resistance. I will maintain that we can only attempt to mitigate resistance because resistance is a natural evolutionary response to environmental stresses. As such, resistance will remain an ongoing dilemma in pest management and we can only delay the onset of resistance to pesticides. ''Resistance management'' models and tactics have been much discussed but have been tested and deployed in practical pest management programmes with only limited success. Yet the myth persists that better models will provide a ''solution'' to the problem. The reality is that success in using mitigation models is limited because these models are applied to inappropriate situations in which the critical genetic, ecological, biological or logistic assumptions cannot be met. It is difficult to predict in advance which model is appropriate to a particular situation; if the model assumptions cannot be met, applying the model sometimes can increase the rate of resistance development rather than slow it down. Are there any solutions? I believe we already have one. Unfortunately, it is not a simple or easy one to deploy. It involves employing effective agronomic practices to develop and maintain a healthy crop, monitoring pest densities, evaluating economic injury levels so that pesticides are applied only when necessary, deploying and conserving biological control agents, using host-plant resistance, cultural controls of the pest, biorational pest controls, and genetic control methods. As a part of a truly multi-tactic strategy, it is crucial to evaluate the effect of pesticides on natural enemies in order to preserve them in the cropping system. Sometimes, pesticide-resistant natural enemies are effective components of this resistance mitigation programme. Another name for this resistance mitigation model is integrated pest management (IPM). This complex model was outlined in some detail nearly 40 years ago by V. M. Stern and colleagues. To deploy the IPM resistance mitigation model, we must admit that pest management and resistance mitigation programmes are not sustainable if based on a single-tactic strategy. Delaying resistance, whether to traditional pesticides or to transgenic plants containing toxin genes from Bacillus thuringiensis, will require that we develop multi-tactic pest management programmes that incorporate all appropriate pest management approaches. Because pesticides are limited resources, and their loss can result in significant social and economic costs, they should be reserved for situations where they are truly needed--as tools to subdue an unexpected pest population outbreak. Effective multi-tactic IPM programmes delay resistance (= mitigation) because the number and rates of pesticide applications will be reduced.  相似文献   

19.
The object of the present paper is to study an integrated pest management (IPM) problem in an agroecosystem (paddy-fish culture) through mathematical modeling and analysis, where release of sterile males and spraying of pesticide have been used as control measures for pest population. Using optimal analysis of the model, we have shown that restricted and proper use of control measures might enhance the crop production of the system in an economically viable way. The paper also considers the vulnerability of the underlined ecosystem due to the effect of temperature on the pest growth. Using Liapunov-like function, we have found out a suitable range of temperature, where this IPM strategy remains effective. Some important remarks have finally been made on the basis of numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号