首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clearance of infected and apoptotic neuronal corpses during inflammatory conditions is a fundamental process to create a favorable environment for neuronal recovery. Microglia are the resident immune cells and the predominant phagocytic cells of the CNS, showing a multitude of cellular responses upon activation. Here, we investigated in functional assays how the CO generating enzyme heme oxygenase 1 (HO‐1) influences BV‐2 microglial migration, clearance of debris, and neurite outgrowth of human NT2 neurons. Stimulation of HO‐1 activity attenuated microglial migration in a scratch wound assay, and phagocytosis in a cell culture model of acute inflammation comprising lipopolysaccharide (LPS)‐activated microglia and apoptosis‐induced neurons. Application of a CO donor prevented the production of NO during LPS stimulation, and reduced microglial migration and engulfment of neuronal debris. LPS‐activated microglia inhibited neurite elongation of human neurons without requiring direct cell–cell surface contact. The inhibition of neurite outgrowth was totally reversed by application of exogenous CO or increased internal CO production through supply of the substrate hemin to HO. Our results point towards a vital cytoprotective role of HO‐1/CO signaling after microglial activation. In addition, they support a therapeutic potential of CO releasing chemical agents in the treatment of excessive inflammatory conditions in the CNS. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 854–876, 2015  相似文献   

2.
3.
Reactive oxygen species (ROS) produced by brain-infiltrating macrophages and neutrophils, as well as resident microglia, are pivotal to pathogen clearance during viral brain infection. However, unchecked free radical generation is also responsible for damage to and cytotoxicity of critical host tissue bystander to primary infection. These unwanted effects of excessive ROS are combated by local cellular production of antioxidant enzymes, including heme oxygenase-1 (HO-1) and glutathione peroxidase 1 (Gpx1). In this study, we showed that experimental murine herpes encephalitis triggered robust ROS production, as well as an opposing upregulation of the antioxidants HO-1 and Gpx1. This antioxidant response was insufficient to prevent tissue damage, neurotoxicity, and mortality associated with viral brain infection. Previous studies corroborate our data supporting astrocytes as the major antioxidant producer in brain cell cultures exposed to HSV-1 stimulated microglia. We hypothesized that stimulating opposing antioxidative responses in astrocytes, as well as neurons, would mitigate the effects of ROS-mediated neurotoxicity both in vitro and during viral brain infection in vivo. Here, we demonstrate that the addition of sulforaphane, a potent stimulator of antioxidant responses, enhanced HO-1 and Gpx1 expression in astrocytes through the activation of nuclear factor-E2-related factor 2 (Nrf2). Additionally, sulforaphane treatment was found to be effective in reducing neurotoxicity associated with HSV-stimulated microglial ROS production. Finally, intraperitoneal injections of sulforaphane into mice during active HSV infection reduced neuroinflammation via a decrease in brain-infiltrating leukocytes, macrophage- and neutrophil-produced ROS, and MHCII-positive, activated microglia. These data support a key role for astrocyte-produced antioxidants in modulating oxidative stress and neuronal damage in response to viral infection.  相似文献   

4.
Microglia engage in the clearance of dead cells or dangerous debris. When neighboring cells are injured, the cells release or leak ATP into extracellular space and microglia rapidly move toward or extend a process to the nucleotides as chemotaxis through P2Y12 receptors. In the meanwhile, microglia express the metabotropic P2Y6 receptors, the activation of which by uridine 5’-diphosphate (UDP) triggers microglial phagocytosis in a concentration-dependent fashion. UDP/UTP was leaked when hippocampal neurons were damaged by kainic acid in vivo and in vitro. Systemic administration of kainic acid in rats resulted in neuronal cell death in the hippocampal CA1 and CA3 regions, where increases in mRNA for P2Y6 receptors in activated microglia. Thus, the P2Y6 receptor is upregulated when neurons are damaged, and would function as a sensor for phagocytosis by sensing diffusible UDP signals.  相似文献   

5.
Heme oxygenase-2 gene deletion increases astrocyte vulnerability to hemin   总被引:5,自引:0,他引:5  
In a prior study, we observed that heme oxygenase-2 gene deletion protected murine cortical neurons from heme-mediated injury. In the course of these studies, constitutive HO-2 expression was observed in astrocyte cultures. The present study tested the hypothesis that astrocytes lacking the HO-2 gene would be less vulnerable to heme. Contrary to this hypothesis, gene deletion resulted in a 50-75% increase in cell death after 6h exposure to 30 or 60microM hemin, as measured by LDH release. A similar effect was observed when cell viability was assessed with the MTT assay. HO-2 gene deletion did not alter cellular expression of HO-1. The increased sensitivity of knockout astrocytes to hemin was reversed by increasing HO-1 expression by adenoviral gene transfer. These results suggest that heme oxygenase protects astrocytes from heme-mediated oxidative injury and highlight the disparate effect of HO in neurons and astrocytes.  相似文献   

6.
The heme oxygenase family of enzymes catalyzes the metabolism of heme to biliverdin, ferrous iron, and carbon monoxide (CO). At least two isoforms exist, heme oxygenase-1 (HO1) and heme oxygenase-2 (HO2), which are encoded by separate genes. HO2 is selectively enriched in neurons, and substantial evidence suggests that HO2-derived CO functions as a neurotransmitter/neuromodulator. However, a molecular mechanism for the rapid activation of HO2 during neuronal activity has not been described. Through a yeast two-hybrid screen we identified calmodulin as a potential regulator of HO2 activity. Calmodulin binds with nanomolar affinity to HO2 in a calcium-dependent manner via a canonical 1-10 motif, resulting in a 3-fold increase in catalytic activity. Mutations within this motif block calmodulin binding and calcium-dependent stimulation of enzyme activity in vitro and in intact cells. The calcium mobilizing agents ionomycin and glutamate stimulate endogenous HO2 activity in primary cortical cultures, establishing in vivo relevance. Calcium-calmodulin provides a mechanism for rapid and transient activation of HO2 during neuronal activity.  相似文献   

7.
Microglia are present in an activated state in multiple sclerosis lesions. Incubation of primary cultured rat microglia with rat-brain derived myelin (0.1–1 μg/mL) for 24 h induced microglial activation; cells displayed enhanced ED1 staining, expression of inducible nitric oxide synthase, production and release of the cytokine tumour necrosis factor-α and glutamate release. Exposure of microglia to myelin induced the expression of neuronal caspases and ultimately neuronal death in cultured cerebellar granule cell neurons; neurotoxicity was directly because of microglial-derived soluble toxins. Co-incubation of microglia with agonists or antagonists of different metabotropic glutamate receptor (mGluR) subtypes ameliorated microglial neurotoxicity by inhibiting soluble neurotoxin production. Activation of microglial mGluR2 exacerbated myelin-evoked neurotoxicity whilst activation of mGluR3 was protective as was activation of group III mGluRs. These data show that myelin-induced microglial neurotoxicity can be prevented by regulation of mGluRs and suggest these receptors on microglia may be promising targets for therapeutic intervention in multiple sclerosis.  相似文献   

8.
In the brain, communication between neural and non-neural cells is crucial for the proper functioning of the central nervous system. Microglia play an important role in the clearance of neural cellular corpses and debris, especially under pathological conditions. It remains, however, unclear how microglia sense the degenerating neurons at a distance in order to migrate to them. In the present study, we explored the interaction between neurons and microglia using an in vitro model of Parkinson's disease (PD). In primary mesencephalic neuronal cultures, 1-methyl-4-phenylpridinium (MPP(+)) induced the selective death of dopaminergic (DAergic) neurons in a dose- and time-dependent manner. Transmigration assay showed that the conditioned medium (CM) from mesencephalic cultures treated with MPP(+) was enough to trigger the attraction of microglia at an early as well as a late phase of neuronal damage. Microglia preferably reacted with the soluble parts separated by ultracentrifugation over the neural debris-containing pellets. This chemoattractive activity was significantly reduced by the removal of the lipidic components in CM, but not by the removal of proteins, DNA or RNA. These results suggest that as yet-unidentified lipid-like components released from dying DAergic neurons are likely to recruit microglia, and thus have a role in neuronal damage.  相似文献   

9.
Werner  A.  Kloss  C. U. A.  Walter  J.  Kreutzberg  G. W  Raivich  G. 《Brain Cell Biology》1998,27(4):219-232
Intercellular adhesion molecule 1 (ICAM-1, CD54) is a widely expressed glycoprotein, which plays an important role in leukocyte extravasation and in the interaction of lymphocytes with antigen-presenting cells. In the current study we examined the regulation of ICAM-1 in the mouse facial motor nucleus after facial nerve transection, using immunohistochemistry, confocal laser microscopy and electron microscopy. In the normal facial nucleus ICAM-1 immunoreactivity was restricted to vascular endothelium. Transection of the facial nerve led to a strong and selective upregulation of ICAM-1 on activated microglia. Quantitation of microglial ICAM-1 immunoreactivity revealed a biphasic increase. The first peak 1–2 days post operation paralleling the early stage of microglial activation was followed by a decline at 4–7 days. The second induction of ICAM-1 occured at day 14 accompanying the period of neuronal cell death and microglial phagocytosis of neuronal debris. Immunoelectron microscopy showed strong ICAM-1 reactivity on the cell membrane of activated microglia at day 2. During the second peak (day 14), ICAM-1 was also observed on lymphocytes adhering to phagocytotic microglia forming aggregates around neuronal debris. No immunolabelling was observed on neurons, astrocytes or oligodendroglia. These data suggest the involvement of ICAM-1 in the adhesion of activated microglia, in their phagocytosis of neuronal debris, and also in the interaction with infiltrating lymphocytes following this injury.  相似文献   

10.
Neuronal cell death caused by oxidative stress is common in a variety of neural diseases and can be investigated in detail in cultured HT22 neuronal cells, where the amino acid glutamate at high concentrations causes glutathione depletion by inhibition of the glutamate/cystine antiporter system, intracellular accumulation of reactive oxygen species (ROS) and eventually oxidative stress-induced neuronal cell death. Using this paradigm, we have previously reported that resveratrol (3,5,4′-trans-trihydroxystilbene) protects HT22 neuronal cells from glutamate-induced oxidative stress by inducing heme oxygenase (HO)-1 expression. Piceatannol (3,5,4′,3′-trans-trihydroxystilbene), which is a hydroxylated resveratrol analog and one of the resveratrol metabolites, is estimated to exert neuroprotective effect similar to that of resveratrol. The aim of this study, thus, is to determine whether piceatannol, similarly to resveratrol, would protect HT22 neuronal cells from glutamate-induced oxidative stress. Glutamate at high concentrations induced neuronal cell death and ROS formation. Piceatannol reduced glutamate-induced cell death and ROS formation. The observed cytoprotective effect was much higher when HT22 neuronal cells were pretreated with piceatannol for 6 or 12 h prior to glutamate treatment than when pretreated for 0.5 h. Piceatannol also increased HO-1 expression and HO activity via its activation of nuclear factor-E2-related factor 2 (Nrf2). Interestingly, neuroprotective effect of piceatannol was partly (but not completely) abolished by either down-regulation of HO-1 expression or blockage of HO-1 activity. Taken together, our results suggest that piceatannol, similar to resveratrol, is capable of protecting HT22 neuronal cells against glutamate-induced cell death, at least in part, by inducing Nrf2-dependent HO-1 expression.  相似文献   

11.
3-O-caffeoylquinic acid (3-CQA) is an isomer of chlorogenic acid, which has been shown to regulate lipopolysaccharide-induced tumor necrosis factor production in microglia. Whereas overactivation of microglia is associated with neuronal loss in brain diseases via reactive oxygen species (ROS) production and glutamate excitotoxicity, naïve (nonactivated) microglia are believed to generate little ROS under basal conditions, contributing to the modulation of synaptic activity and nerve tissue repair. However, the signaling pathways controlling basal ROS homeostasis in microglial cells are still poorly understood. Here we used time-lapse microscopy coupled with highly sensitive FRET biosensors (for detecting c-Src activation, ROS generation, and glutamate release) and lentivirus-mediated shRNA delivery to study the pathways involved in antioxidant-regulated ROS generation and how this associates with microglia-induced neuronal cell death. We report that 3-CQA abrogates the acquisition of an amoeboid morphology in microglia triggered by Aβ oligomers or the HIV Tat peptide. Moreover, 3-CQA deactivates c-Src tyrosine kinase and abrogates c-Src activation during proinflammatory microglia stimulation, which shuts off ROS production in these cells. Moreover, forced increment of c-Src catalytic activity by overexpressing an inducible c-Src heteromerization construct in microglia increases ROS production, abrogating the 3-CQA effects. Whereas oxidant (hydrogen peroxide) stimulation dramatically enhances glutamate release from microglia, such release is diminished by the 3-CQA inhibition of c-Src/ROS generation, significantly alleviating cell death in cultures from embryonic neurons. Overall, we provide further mechanistic insight into the modulation of ROS production in cortical microglia, indicating antioxidant-regulated c-Src function as a pathway for controlling microglia-triggered oxidative damage.  相似文献   

12.
We have isolated a new microglial gene, mrf-1, which is upregulated on microglia in response to apoptosis of granule neurons in cerebellar cell cultures. We examined whether or not upregulation of MRF-1 is observed in response to necrotic neuronal death both in vivo and in vitro. Though MRF-1 was detected on ramified/resting microglia in the brain of normal adult rats, activated microglia in the region of the brain where neuronal damage was induced by ischemia were strongly immunostained with anti-MRF-1 anti-body. In the in vitro system, we confirmed, with immunocytochemistry or RT-PCR, that MRF-1 or mrf-1 mRNA were constitutively expressed in ramified microglia at significant but lower levels than in amoeboid one. Moreover, by Northern blot, it was ascertained that expression level of mrf-1 mRNA on microglia was markedly upregulated in response to glutamate-induced death of granule cells in a cerebellar cell culture. These results indicate the following: 1) expression of mrf-1 in microglia may be markedly enhanced upon not only apoptotic but also necrotic neuronal death, and 2) MRF-1 is, thus, an useful marker for identifying all types of microglia in vivo and in vitro.  相似文献   

13.
Heme oxygenase consists of two structurally related isozymes, heme oxygenase-1 and and heme oxygenase-2, each of which cleaves heme to form biliverdin, iron and carbon monoxide. Expression of heme oxygenase-1 is increased or decreased depending on cellular microenvironments, whereas little is known about the regulation of heme oxygenase-2 expression. Here we show that hypoxia (1% oxygen) reduces the expression levels of heme oxygenase-2 mRNA and protein after 48 h of incubation in human cell lines, including Jurkat T-lymphocytes, YN-1 and K562 erythroleukemia, HeLa cervical cancer, and HepG2 hepatoma, as judged by northern blot and western blot analyses. In contrast, the expression level of heme oxygenase-1 mRNA varies under hypoxia, depending on the cell line; it was increased in YN-1 cells, decreased in HeLa and HepG2 cells, and remained undetectable in Jurkat and K562 cells. Moreover, heme oxygenase-1 protein was decreased in YN-1 cells under the conditions used, despite the induction of heme oxygenase-1 mRNA under hypoxia. The heme oxygenase activity was significantly decreased in YN-1, K562 and HepG2 cells after 48 h of hypoxia. To explore the mechanism for the hypoxia-mediated reduction of heme oxygenase-2 expression, we showed that hypoxia shortened the half-life of heme oxygenase-2 mRNA (from 12 h to 6 h) in YN-1 cells, without affecting the half-life of heme oxygenase-1 mRNA (9.5 h). Importantly, the heme contents were increased in YN-1, HepG2 and HeLa cells after 48 h of incubation under hypoxia. Thus, the reduced expression of heme oxygenase-2 may represent an important adaptation to hypoxia in certain cell types, which may contribute to the maintenance of the intracellular heme level.  相似文献   

14.
15.
Substantial evidence has shown that elevated circulating corticosteroids or chronic stress contributes to neuronal cell death, cognitive and mental disorders. However, the underlying mechanism is still unclear. Taurine is considered to protect neuronal cells from apoptotic cell death in neurodegenerative diseases and neuropsychiatric disorders. In the present study, the protective effects of taurine against corticosterone (CORT)-induced oxidative damage in SK-N-SH neuronal cells were investigated. The results showed that CORT significantly induced cell death, which was blocked by pretreatment with taurine. Similarly, pretreatment with taurine suppressed CORT-induced apoptotic cell death decreasing the levels of intracellular reactive oxygen species and improving mitochondrial function. Pretreatment with taurine increased the expression of phosphorylated extracellular regulated protein kinases (ERK) as well as the nuclear translocation of nuclear factor (erythroid 2-derived)-like 2 (Nrf2) in the CORT rich environment. Furthermore, administration of the ERK inhibitor U0126 or transient (siRNA) silencing of Nrf2 blocked the protective effects of taurine on cell viability and expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the CORT model of neuronal damage. These results suggest that the Nrf2 signaling pathway may play a role in the protection mechanism of taurine against CORT-induced neuronal oxidative damage.  相似文献   

16.
Abstract : The inhibitor of apoptosis (IAP) family of anti-apoptotic genes, originally discovered in baculovirus, exists in animals ranging from insects to humans. Here, we investigated the ability of IAPs to suppress cell death in both a neuronal model of apoptosis and excitotoxicity. Cerebellar granule neurons undergo apoptosis when switched from 25 to 5 m M potassium, and excitotoxic cell death in response to glutamate. We examined the endogenous expression of four members of the IAP family, X chromosome-linked IAP (XIAP), rat IAP1 (RIAP1), RIAP2, and neuronal apoptosis inhibitory protein (NAIP), by semiquantitative reverse PCR and immunoblot analysis in cultured cerebellar granule neurons. Cerebellar granule neurons express significant levels of RIAP2 mRNA and protein, but expression of RIAP1, NAIP, and XIAP was not detected. RIAP2 mRNA content and protein levels did not change when cells were switched from 25 to 5 m M potassium. To determine whether ectopic expression of IAP influenced neuronal survival after potassium withdrawal or glutamate exposure, we used recombinant adenoviral vectors to target XIAP, human IAP1 (HIAP1), HIAP2, and NAIP into cerebellar granule neurons. We demonstrate that forced expression of IAPs efficiently blocked potassium withdrawal-induced N -acetly-Asp-Glu-Val-Asp-specific caspase activity and reduced DNA fragmentation. However, neurons were only protected from apoptosis up to 24 h after potassium withdrawal, not at later time points suggesting that IAPS delay but do not block apoptosis in cerebellar granule neurons. In contrast, treatment with 100 μ M or 1 m M glutamate did not induce caspase activity and adenoviral-mediated expression of IAPs had no influence on subsequent excitotoxic cell death.  相似文献   

17.
Glutamate released by activated microglia induces excitoneurotoxicity and may contribute to neuronal damage in neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. In addition, tumor necrosis factor-alpha (TNF-alpha) secreted from activated microglia may elicit neurodegeneration through caspase-dependent cascades and silencing cell survival signals. However, direct neurotoxicity of TNF-alpha is relatively weak, because TNF-alpha also increases production of neuroprotective factors. Accordingly, it is still controversial how TNF-alpha exerts neurotoxicity in neurodegenerative diseases. Here we have shown that TNF-alpha is the key cytokine that stimulates extensive microglial glutamate release in an autocrine manner by up-regulating glutaminase to cause excitoneurotoxicity. Further, we have demonstrated that the connexin 32 hemichannel of the gap junction is another main source of glutamate release from microglia besides glutamate transporters. Although pharmacological blockade of glutamate receptors is a promising therapeutic candidate for neurodegenerative diseases, the associated perturbation of physiological glutamate signals has severe adverse side effects. The unique mechanism of microglial glutamate release that we describe here is another potential therapeutic target. We rescued neuronal cell death in vitro by using a glutaminase inhibitor or hemichannel blockers to diminish microglial glutamate release without perturbing the physiological glutamate level. These drugs may give us a new therapeutic strategy against neurodegenerative diseases with minimum adverse side effects.  相似文献   

18.
Ageing is accompanied by a decline in cognitive functions; along with a variety of neurobiological changes. The association between inflammation and ageing is based on complex molecular and cellular changes that we are only just beginning to understand. The hippocampus is one of the structures more closely related to electrophysiological, structural and morphological changes during ageing. In the present study we examined the effect of normal ageing and LPS-induced inflammation on astroglia-neuron interaction in the rat hippocampus of adult, normal aged and LPS-treated adult rats. Astrocytes were smaller, with thicker and shorter branches and less numerous in CA1 Str. radiatum of aged rats in comparison to adult and LPS-treated rats. Astrocyte branches infiltrated apoptotic neurons of aged and LPS-treated rats. Cellular debris, which were more numerous in CA1 of aged and LPS-treated rats, could be found apposed to astrocytes processes and were phagocytated by reactive microglia. Reactive microglia were present in the CA1 Str. Radiatum, often in association with apoptotic cells. Significant differences were found in the fraction of reactive microglia which was 40% of total in adult, 33% in aged and 50% in LPS-treated rats. Fractalkine (CX3CL1) increased significantly in hippocampus homogenates of aged and LPS-treated rats. The number of CA1 neurons decreased in aged rats. In the hippocampus of aged and LPS-treated rats astrocytes and microglia may help clearing apoptotic cellular debris possibly through CX3CL1 signalling. Our results indicate that astrocytes and microglia in the hippocampus of aged and LPS-infused rats possibly participate in the clearance of cellular debris associated with programmed cell death. The actions of astrocytes may represent either protective mechanisms to control inflammatory processes and the spread of further cellular damage to neighboring tissue, or they may contribute to neuronal damage in pathological conditions.  相似文献   

19.
In multicellular organisms, receptor tyrosine kinases (RTKs) control a variety of cellular processes, including cell proliferation, differentiation, migration, and survival. Sprouty (SPRY) proteins represent an important class of ligand-inducible inhibitors of RTK-dependent signaling pathways. Here, we investigated the role of SPRY1 in cells of the central nervous system (CNS). Expression of SPRY1 was substantially higher in neural stem cells than in cortical neurons and was increased during neuronal differentiation of cortical neurons. We found that SPRY1 was a direct target gene of the CNS-specific microRNA, miR-124 and miR-132. In primary cultures of cortical neurons, the neurotrophic factors brain-derived neurotrophic factor (BDNF) and Basic fibroblast growth factor (FGF2) downregulated SPRY1 expression to positively regulate their own functions. In immature cortical neurons and mouse N2A cells, we found that overexpression of SPRY1 inhibited neurite development, whereas knockdown of SPRY1 expression promoted neurite development. In mature neurons, overexpression of SPRY1 inhibited the prosurvival effects of both BDNF and FGF2 on glutamate-mediated neuronal cell death. SPRY1 was also upregulated upon glutamate treatment in mature neurons and partially contributed to the cytotoxic effect of glutamate. Together, our results indicate that SPRY1 contributes to the regulation of CNS functions by influencing both neuronal differentiation under normal physiological processes and neuronal survival under pathological conditions.  相似文献   

20.
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), two pro‐inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL‐1β and/or TNF‐α treatment. Pre‐treatment with N‐Methyl‐d ‐aspartate (NMDA) receptor antagonist MK‐801 blocked cytokine‐induced glutamate production and alleviated the neurotoxicity, indicating that IL‐1β and/or TNF‐α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL‐1β or TNF‐α significantly upregulated the kidney‐type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up‐regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV‐1 encephalitis. In addition, IL‐1β or TNF‐α treatment increased the levels of KGA in cytosol and TNF‐α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号