首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Background

Glutamate released by activated microglia induces excitotoxic neuronal death, which likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases, including amyotrophic lateral sclerosis and Alzheimer''s disease. Although both blockade of glutamate receptors and inhibition of microglial activation are the therapeutic candidates for these neurodegenerative diseases, glutamate receptor blockers also perturbed physiological and essential glutamate signals, and inhibitors of microglial activation suppressed both neurotoxic/neuroprotective roles of microglia and hardly affected disease progression. We previously demonstrated that activated microglia release a large amount of glutamate specifically through gap junction hemichannel. Hence, blockade of gap junction hemichannel may be potentially beneficial in treatment of neurodegenerative diseases.

Methods and Findings

In this study, we generated a novel blood-brain barrier permeable gap junction hemichannel blocker based on glycyrrhetinic acid. We found that pharmacologic blockade of gap junction hemichannel inhibited excessive glutamate release from activated microglia in vitro and in vivo without producing notable toxicity. Blocking gap junction hemichannel significantly suppressed neuronal loss of the spinal cord and extended survival in transgenic mice carrying human superoxide dismutase 1 with G93A or G37R mutation as an amyotrophic lateral sclerosis mouse model. Moreover, blockade of gap junction hemichannel also significantly improved memory impairments without altering amyloid β deposition in double transgenic mice expressing human amyloid precursor protein with K595N and M596L mutations and presenilin 1 with A264E mutation as an Alzheimer''s disease mouse model.

Conclusions

Our results suggest that gap junction hemichannel blockers may represent a new therapeutic strategy to target neurotoxic microglia specifically and prevent microglia-mediated neuronal death in various neurodegenerative diseases.  相似文献   

2.
Microglia are present in an activated state in multiple sclerosis lesions. Incubation of primary cultured rat microglia with rat-brain derived myelin (0.1–1 μg/mL) for 24 h induced microglial activation; cells displayed enhanced ED1 staining, expression of inducible nitric oxide synthase, production and release of the cytokine tumour necrosis factor-α and glutamate release. Exposure of microglia to myelin induced the expression of neuronal caspases and ultimately neuronal death in cultured cerebellar granule cell neurons; neurotoxicity was directly because of microglial-derived soluble toxins. Co-incubation of microglia with agonists or antagonists of different metabotropic glutamate receptor (mGluR) subtypes ameliorated microglial neurotoxicity by inhibiting soluble neurotoxin production. Activation of microglial mGluR2 exacerbated myelin-evoked neurotoxicity whilst activation of mGluR3 was protective as was activation of group III mGluRs. These data show that myelin-induced microglial neurotoxicity can be prevented by regulation of mGluRs and suggest these receptors on microglia may be promising targets for therapeutic intervention in multiple sclerosis.  相似文献   

3.
Yawata I  Takeuchi H  Doi Y  Liang J  Mizuno T  Suzumura A 《Life sciences》2008,82(21-22):1111-1116
We have shown previously, that the most neurotoxic factor from activated microglia is glutamate that is produced by glutaminase utilizing extracellular glutamine as a substrate. Drugs that inhibit glutaminase or gap junction through which the glutamate is released were effective in reducing neurotoxic activity of microglia. In this study, to elucidate whether or not a similar mechanism is operating in macrophages infiltrating into the central nervous system during inflammatory, demyelinating, and ischemic brain diseases, we examined the neurotoxicity induced by macrophages, in comparison with microglia in vitro. LPS- or TNF-alpha-stimulated macrophage-conditioned media induced robust neurotoxicity, which was completely inhibited by the NMDA receptor antagonist MK801. Both the glutaminase inhibitor 6-diazo-5-oxo-l-norleucine (DON), and the gap junction inhibitor carbenoxolone (CBX), effectively suppressed glutamate production and subsequent neurotoxicity by activated macrophages. These results revealed that macrophages produce glutamate via glutaminase from extracelluar glutamine, and release it through gap junctions. This study demonstrated that a similar machinery is operating in macrophages as well, and DON and CBX that prevent microglia-mediated neurotoxicity should be effective for preventing macrophage-mediated neurotoxicity. Thus, these drugs may be effective therapeutic reagents for inflammatory, demyelinating, and ischemic brain diseases.  相似文献   

4.
Recent studies suggest that excitotoxicity may contribute to neuronal damage in neurodegenerative diseases including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. Activated microglia have been observed around degenerative neurons in these diseases, and they are thought to act as effector cells in the degeneration of neural cells in the central nervous system. Neuritic beading, focal bead-like swellings in the dendrites and axons, is a neuropathological sign in epilepsy, trauma, ischemia, aging, and neurodegenerative diseases. Previous reports showed that neuritic beading is induced by various stimuli including glutamate or nitric oxide and is a neuronal response to harmful stimuli. However, the precise physiologic significance of neuritic beading is unclear. We provide evidence that neuritic beading induced by activated microglia is a feature of neuronal cell dysfunction toward neuronal death, and the neurotoxicity of activated microglia is mediated through N-methyl-d-aspartate (NMDA) receptor signaling. Neuritic beading occurred concordant with a rapid drop in intracellular ATP levels and preceded neuronal death. The actual neurite beads consisted of collapsed cytoskeletal proteins and motor proteins arising from impaired neuronal transport secondary to cellular energy loss. The drop in intracellular ATP levels was because of the inhibition of mitochondrial respiratory chain complex IV activity downstream of NMDA receptor signaling. Blockage of NMDA receptors nearly completely abrogated mitochondrial dysfunction and neurotoxicity. Thus, neuritic beading induced by activated microglia occurs through NMDA receptor signaling and represents neuronal cell dysfunction preceding neuronal death. Blockage of NMDA receptors may be an effective therapeutic approach for neurodegenerative diseases.  相似文献   

5.
Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest.  相似文献   

6.
Glutaminase 1 is the main enzyme responsible for glutamate production in mammalian cells. The roles of macrophage and microglia glutaminases in brain injury, infection, and inflammation are well documented. However, little is known about the regulation of neuronal glutaminase, despite neurons being a predominant cell type of glutaminase expression. Using primary rat and human neuronal cultures, we confirmed that interleukin‐1β (IL‐1β) and tumor necrosis factor‐α (TNF‐α), two pro‐inflammatory cytokines that are typically elevated in neurodegenerative disease states, induced neuronal death and apoptosis in vitro. Furthermore, both intracellular and extracellular glutamate levels were significantly elevated following IL‐1β and/or TNF‐α treatment. Pre‐treatment with N‐Methyl‐d ‐aspartate (NMDA) receptor antagonist MK‐801 blocked cytokine‐induced glutamate production and alleviated the neurotoxicity, indicating that IL‐1β and/or TNF‐α induce neurotoxicity through glutamate. To determine the potential source of excess glutamate production in the culture during inflammation, we investigated the neuronal glutaminase and found that treatment with IL‐1β or TNF‐α significantly upregulated the kidney‐type glutaminase (KGA), a glutaminase 1 isoform, in primary human neurons. The up‐regulation of neuronal glutaminase was also demonstrated in situ in a murine model of HIV‐1 encephalitis. In addition, IL‐1β or TNF‐α treatment increased the levels of KGA in cytosol and TNF‐α specifically increased KGA levels in the extracellular fluid, away from its main residence in mitochondria. Together, these findings support neuronal glutaminase as a potential component of neurotoxicity during inflammation and that modulation of glutaminase may provide therapeutic avenues for neurodegenerative diseases.  相似文献   

7.
Regulation of microglial reactivity and neurotoxicity is critical for neuroprotection in neurodegenerative diseases. Here we report that microglia possess functional group II metabotropic glutamate receptors, expressing mRNA and receptor protein for mGlu2 and mGlu3, negatively coupled to adenylate cyclase. Two different agonists of these receptors were able to induce a neurotoxic microglial phenotype which was attenuated by a specific antagonist. Chromogranin A, a secretory peptide expressed in amyloid plaques in Alzheimer's disease, activates microglia to a reactive neurotoxic phenotype. Chromogranin A-induced microglial activation and subsequent neurotoxicity may also involve an underlying stimulation of group II metabotropic glutamate receptors since their inhibition reduced chromogranin A-induced microglial reactivity and neurotoxicity. These results show that selective inhibition of microglial group II metabotropic glutamate receptors has a positive impact on neuronal survival, and may prove a therapeutic target in Alzheimer's disease.  相似文献   

8.
Claudie Hooper 《FEBS letters》2009,583(21):3461-145
Chromogranin A (CgA), a neuroactive glycoprotein, is associated with microglial activation cascades implicated in neurodegeneration. Here we show that CgA-dependent inducible nitric oxide synthase (iNOS) expression and stress responses in microglia involved signalling via scavenger receptors (SR), since SR class-A (SR-A) ligands blocked iNOS expression, mitochondrial depolarisation, apoptosis and glutamate release. Furthermore, block of SR-A ameliorated CgA-induced microglial neurotoxicity. In contrast, block of CD36, or the receptor for advanced glycation end products (RAGE) did not prevent CgA-induced microglial activation and neurotoxicity. Thus, manipulation of specific scavenger receptor-coupled signalling pathways may provide avenues for therapeutic intervention in neurodegenerative diseases implicating microglial activation with chromogranin peptides.  相似文献   

9.
Microglia-mediated cytotoxicity has been implicated in models of neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease, but few studies have documented how neuroprotective signals might mitigate such cytotoxicity. To explore the neuroprotective mechanism of anti-inflammatory cytokines, we applied interleukin-4 (IL-4) to primary microglial cultures activated by lipopolysaccharide as well as to activated microglia cocultured with primary motoneurons. lipopolysaccharide increased nitric oxide and superoxide (O(2) (.-)) and decreased insulin-like growth factor-1 (IGF-1) release from microglial cultures, and induced motoneuron injury in microglia-motoneuron cocultures. However, lipopolysaccharide had minimal effects on isolated motoneuron cultures. IL-4 interaction with microglial IL-4 receptors suppressed and nitric oxide release, and lessened lipopolysaccharide-induced microglia-mediated motoneuron injury. The extent of nitric oxide suppression correlated directly with the extent of motoneuron survival. Although IL-4 enhanced release of free IGF-1 from microglia in the absence of lipopolysaccharide, it did not enhance free IGF-1 release in the presence of lipopolysaccharide. These data suggest that IL-4 may provide a significant immunomodulatory signal which can protect against microglia-mediated neurotoxicity by suppressing the production and release of free radicals.  相似文献   

10.
Microglia-mediated neurotoxicity: uncovering the molecular mechanisms   总被引:4,自引:0,他引:4  
Mounting evidence indicates that microglial activation contributes to neuronal damage in neurodegenerative diseases. Recent studies show that in response to certain environmental toxins and endogenous proteins, microglia can enter an overactivated state and release reactive oxygen species (ROS) that cause neurotoxicity. Pattern recognition receptors expressed on the microglial surface seem to be one of the primary, common pathways by which diverse toxin signals are transduced into ROS production. Overactivated microglia can be detected using imaging techniques and therefore this knowledge offers an opportunity not only for early diagnosis but, importantly, for the development of targeted anti-inflammatory therapies that might slow or halt the progression of neurodegenerative disease.  相似文献   

11.

Background

HIV-1-infected and/or immune-activated microglia and macrophages are pivotal in the pathogenesis of HIV-1-associated neurocognitive disorders (HAND). Glutaminase, a metabolic enzyme that facilitates glutamate generation, is upregulated and may play a pathogenic role in HAND. Our previous studies have demonstrated that glutaminase is released to the extracellular fluid during HIV-1 infection and neuroinflammation. However, key molecular mechanisms that regulate glutaminase release remain unknown. Recent advances in understanding intercellular trafficking have identified microvesicles (MVs) as a novel means of shedding cellular contents. We posit that during HIV-1 infection and immune activation, microvesicles may mediate glutaminase release, generating excessive and neurotoxic levels of glutamate.

Results

MVs isolated through differential centrifugation from cell-free supernatants of monocyte-derived macrophages (MDM) and BV2 microglia cell lines were first confirmed in electron microscopy and immunoblotting. As expected, we found elevated number of MVs, glutaminase immunoreactivities, as well as glutaminase enzyme activity in the supernatants of HIV-1 infected MDM and lipopolysaccharide (LPS)-activated microglia when compared with controls. The elevated glutaminase was blocked by GW4869, a neutral sphingomyelinase inhibitor known to inhibit MVs release, suggesting a critical role of MVs in mediating glutaminase release. More importantly, MVs from HIV-1-infected MDM and LPS-activated microglia induced significant neuronal injury in rat cortical neuron cultures. The MV neurotoxicity was blocked by a glutaminase inhibitor or GW4869, suggesting that the neurotoxic potential of HIV-1-infected MDM and LPS-activated microglia is dependent on the glutaminase-containing MVs.

Conclusions

These findings support MVs as a potential pathway/mechanism of excessive glutamate generation and neurotoxicity in HAND and therefore MVs may serve as a novel therapeutic target.
  相似文献   

12.
Tian YY  An LJ  Jiang L  Duan YL  Chen J  Jiang B 《Life sciences》2006,80(3):193-199
Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD). Microglia, the resident immune cells in the central nervous system, are pivotal in the inflammatory reaction. Activated microglia can induce expression of inducible nitric-oxide synthase (iNOS) and release significant amounts of nitric oxide (NO) and TNF-alpha, which can damage the dopaminergic neurons. Catalpol, an iridoid glycoside, contained richly in the roots of Rehmannia glutinosa, was found to be neuroprotective in gerbils subjected to transient global cerebral ischemia. But the effect of catalpol on inflammation-mediated neurodegeneration has not been examined. In this study, microglia in mesencephalic neuron-glia cultures were activated with lipopolysaccharide (LPS) and the aim of the study was to examine whether catalpol could protect dopaminergic neurons from LPS-induced neurotoxicity. The results showed that catalpol significantly reduced the release of reactive oxygen species (ROS), TNF-alpha and NO after LPS-induced microglial activation. Further, catalpol attenuated LPS-induced the expression of iNOS. As determined by immunocytochemical analysis, pretreatment by catalpol dose-dependently protected dopaminergic neurons against LPS-induced neurotoxicity. These results suggest that catalpol exerts its protective effect on dopaminergic neurons by inhibiting microglial activation and reducing the production of proinflammatory factors. Thus, catalpol may possess therapeutic potential against inflammation-related neurodegenerative diseases.  相似文献   

13.
The inflammatory response in the central nervous system involves activated microglia. Under normal conditions they remove damaged neurons by phagocytosis. On the other hand, neurodegenerative diseases are thought to involve chronic microglia activation resulting in release of excess glutamate, proinflammatory cytokines and reactive oxygen species, leading to neuronal death. System xC- cystine/glutamate antiporter (SXC), a sodium independent heterodimeric transporter found in microglia and astrocytes in the CNS, imports cystine into the cell and exports glutamate. SXC has been shown to be upregulated in neurodegenerative diseases including multiple sclerosis, ALS, neuroAIDS Parkinson's disease and Alzheimer's disease. Consequently, SXC inhibitors could be of use in the treatment of diseases characterized by neuroinflammation and glutamate excitotoxicity. We report on the optimization of a primary microglia-based assay to screen for SXC inhibitors. Rat primary microglia were activated using lipopolysaccharides (LPS) and glutamate release and cystine uptake were monitored by fluorescence and radioactivity respectively. LPS-induced glutamate release increased with increasing cell density, time of incubation and LPS concentration. Conditions to screen for SXC inhibitors were optimized in 96-well format and subsequently used to evaluate SXC inhibitors. Known SXC inhibitors sulfasalazine, S-4CPG and erastin blocked glutamate release and cystine uptake while R-4CPG, the inactive enantiomer of S-4CPG, failed to inhibit glutamate release or cystine transport. In addition, several erastin analogs were evaluated using primary microglia and found to have EC50 values in agreement with previous studies using established cell lines.  相似文献   

14.
15.
Glutamate-induced excito-neurotoxicity likely contributes to non-cell autonomous neuronal death in neurodegenerative diseases. Microglial clearance of dying neurons and associated debris is essential to maintain healthy neural networks in the central nervous system. In fact, the functions of microglia are regulated by various signaling molecules that are produced as neurons degenerate. Here, we show that the soluble CX3C chemokine fractalkine (sFKN), which is secreted from neurons that have been damaged by glutamate, promotes microglial phagocytosis of neuronal debris through release of milk fat globule-EGF factor 8, a mediator of apoptotic cell clearance. In addition, sFKN induces the expression of the antioxidant enzyme heme oxygenase-1 (HO-1) in microglia in the absence of neurotoxic molecule production, including NO, TNF, and glutamate. sFKN treatment of primary neuron-microglia co-cultures significantly attenuated glutamate-induced neuronal cell death. Using several specific MAPK inhibitors, we found that sFKN-induced heme oxygenase-1 expression was primarily mediated by activation of JNK and nuclear factor erythroid 2-related factor 2. These results suggest that sFKN secreted from glutamate-damaged neurons provides both phagocytotic and neuroprotective signals.  相似文献   

16.
17.
Minocycline inhibits LPS-induced retinal microglia activation   总被引:3,自引:0,他引:3  
  相似文献   

18.
Senile plaques of Alzheimer's brain are characterized by activated microglia and immunoreactivity for the peptide chromogranin A. We have investigated the mechanisms by which chromogranin A activates microglia, producing modulators of neuronal survival. Primary cultures of rat brain-derived microglia display a reactive phenotype within 24 h of exposure to 10 nM chromogranin A, culminating in microglial death via apoptotic mechanisms mediated by interleukin-1beta converting enzyme. The signalling cascade initiated by chromogranin A triggers nitric oxide production followed by enhanced microglial glutamate release, inhibition of which prevents microglial death. The plasma membrane carrier inhibitor aminoadipate and the type II/III metabotropic glutamate receptor antagonist (RS)-alpha-methyl-4-sulphonophenylglycine are equally protective. A significant amount of the released glutamate occurs from bafilomycin-sensitive stores, suggesting a vesicular mode of release. Inhibition of this component of release affords significant microglial protection. Conditioned medium from activated microglia kills cerebellar granule cells by inducing caspase-3-dependent neuronal apoptosis. Brain-derived neurotrophic factor is partially neuroprotective, as are ionotropic glutamate receptor antagonists, and, when combined with boiling of conditioned medium, full protection is achieved; nitric oxide synthase inhibitors are ineffective.  相似文献   

19.
Glutamate excitotoxicity to a large extent is mediated through activation of the N-methyl-D-aspartate (NMDA)-gated ion channels in several neurodegenerative diseases and ischemic stroke. Minocycline, a tetracycline derivative with antiinflammatory effects, inhibits IL-1beta-converting enzyme and inducible nitric oxide synthase up-regulation in animal models of ischemic stroke and Huntington's disease and is therapeutic in these disease animal models. Here we report that nanomolar concentrations of minocycline protect neurons in mixed spinal cord cultures against NMDA excitotoxicity. NMDA treatment alone induced microglial proliferation, which preceded neuronal death, and administration of extra microglial cells on top of these cultures enhanced the NMDA neurotoxicity. Minocycline inhibited all these responses to NMDA. Minocycline also prevented the NMDA-induced proliferation of microglial cells and the increased release of IL-1beta and nitric oxide in pure microglia cultures. Finally, minocycline inhibited the NMDA-induced activation of p38 mitogen-activated protein kinase (MAPK) in microglial cells, and a specific p38 MAPK inhibitor, but not a p44/42 MAPK inhibitor, reduced the NMDA toxicity. Together, these results suggest that microglial activation contributes to NMDA excitotoxicity and that minocycline, a tetracycline derivative, represents a potential therapeutic agent for brain diseases.  相似文献   

20.
Microglial secreted cathepsin B induces neuronal apoptosis   总被引:6,自引:0,他引:6  
Activated microglia release a number of substances that can influence neuronal signalling and survival. Here we report that microglia stimulated with the peptide chromogranin A (CGA), secreted the cysteine protease, cathepsin B. Conditioned medium from CGA exposed microglia was neurotoxic to the HT22 hippocampal cell line and to primary cultures of cerebellar granule neurones. In both neuronal cell types, the neurotoxicity could be significantly attenuated with z-FA-fmk or by depletion of microglial conditioned medium with cathepsin B antibody. Conditioned medium from activated microglia or cathepsin B alone induced neuronal apoptosis and caspase 3 activation. Our data indicate that CGA-activated microglia can trigger neuronal apoptosis and that this may be mediated through the secretion of cathepsin B. Since cathepsins may also play a role in the amyloidogenic processing of amyloid precursor protein, these results may have significance for tissue damage and neuronal loss in the neuropathology of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号