首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 152 毫秒
1.
陆地生态系统氮沉降增加的生态效应   总被引:21,自引:0,他引:21       下载免费PDF全文
 人类活动在全球范围内极大地改变着氮素从大气向陆地生态系统输入的方式和速率,人为固定的氮素正在不断积累,并对生态系统的结构和功 能产生显著影响。该文从以下几个方面综述了大气氮沉降增加对陆地生态系统的影响:1)氮输入增加可能影响植物生产力和生态系统碳蓄积能 力,生态系统响应的方向和程度取决于系统的初始氮状况(氮限制或氮饱和)以及当地的植被和土壤特征;2)持续氮输入有可能改变土壤氮循环 过程,降低土壤固持氮的能力,甚至导致土壤酸化、盐基离子损耗,进而影响到土壤有机碳的分解;3)高的氮沉降速率和持续氮输入都可能加 速含氮痕量气体的释放,但其影响程度受生态系统初始状态的影响(例如磷限制和氮限制);4)氮沉降增加会影响生态系统的物种丰富度、植物 群落结构和动态,促进森林扩张,改变菌根真菌的物种多样性;5)持续氮输入带来的植物群落结构和植物生理特征的变化可能影响昆虫取食特 性,进而通过食物链改变生态系统的营养结构;6) 氮沉降增加对生态系统的影响并不是孤立存在的,它与CO2浓度升高和O3浓度变化有协同作 用,但难以从其协同效应中区分出各自的影响。最后,该文总结了我国的氮沉降研究现状,并对今后的研究前景提出了展望。  相似文献   

2.
森林土壤呼吸对氮硫沉降的响应及机制   总被引:1,自引:0,他引:1  
在氮沉降和硫沉降增加的背景下,土壤氮素可利用性增加和土壤酸化是多数陆地生态系统正在经历的两个重要生态学过程。氮沉降和硫沉降的增加以及两者之间的耦合作用对土壤呼吸会产生扰动,进而很大程度上可能影响到森林生态系统的碳收支。本文综述了氮沉降和硫沉降对土壤呼吸的影响及机制,分析了氮沉降与硫沉降的耦合作用,指出了目前森林生态系统土壤呼吸对氮沉降和硫沉降响应研究的薄弱环节以及今后相关领域的重点研究方向。  相似文献   

3.
顾峰雪  黄玫  张远东  李洁  闫慧敏  郭瑞  钟秀丽 《生态学报》2016,36(17):5379-5390
由于人类活动的干扰,通过沉降和施肥形式进入陆地生态系统的氮素持续增加,中国已经成为继欧洲和北美之后的第三大氮沉降区,同时也是最大的化肥消费国。氮输入与陆地生态系统生物地球化学循环的一系列过程都相互联系,碳循环及其格局也受到氮输入的影响。土壤有机碳库在全球碳循环中具有重要作用,氮输入能否或在多大程度上对土壤碳库产生影响已经成为全球变化和氮沉降研究中不可回避的问题。东北地区是世界三大黑土带之一,土壤碳的变化不仅对于土壤肥力维持具有重要意义,而且对区域碳收支具有重要影响。利用生态系统过程模型——CEVSA2模型,基于我国能源消费、施氮数据和降水数据生成了一套中国大气氮沉降的时空网格数据,结合大气CO_2浓度、气候、土地覆被、土壤类型和质地的时空数据,模拟评估了1961-2010年氮输入对中国东北地区土壤碳蓄积的影响。结果表明:(1)1961-2010年东北地区的平均氮沉降速率为1.00gNm~(-2)a~(-1),年增长率为0.047 gN m~(-2)a~(-1)。东北农田总氮输入速率达到5.78 gN m~(-2)a~(-1),从20世纪80年代开始显著增加。(2)氮输入促进了东北地区土壤碳的蓄积,东北陆地生态系统的土壤碳密度平均增加了135 gC/m~2,50a氮输入共增加土壤碳蓄积0.16 PgC。(3)氮输入引起的东北地区土壤碳蓄积量的变化呈现出东高西低、南高北低的空间格局,辽河平原、松嫩平原和三江平原的土壤碳密度增加量超过了300 gC/m~2。(4)不同植被类型下的土壤碳密度对氮输入的响应存在较大差异,农田土壤碳密度平均增加了230 gC/m~2,森林、灌丛和草地则分别增加了76、169 gC/m~2和89 gC/m~2。氮输入的空间差异和不同植被类型对氮输入响应的差异共同决定了东北地区土壤碳增加量的空间格局。通过本研究阐明了氮输入对东北农田土壤碳蓄积的影响,从而为农田生态系统的固碳减排和农田土壤碳氮管理提供了决策依据。  相似文献   

4.
高思齐  宋艳宇  宋长春  马秀艳  蒋磊 《生态学报》2020,40(13):4617-4627
为探讨温度升高和外源碳输入对泥炭地土壤碳氮循环关键微生物的影响,于2017年7月采集多年冻土区泥炭地表层(0—10 cm和10—20 cm)土壤样品,在10、15℃两个温度下开展为期42d的增温模拟试验,同时设置葡萄糖添加处理,利用荧光定量PCR技术分析泥炭地土壤碳氮循环关键微生物丰度变化,同时分析增温和外源碳输入对泥炭地土壤活性碳组分和无机氮含量的影响。结果表明:温度升高可导致北方泥炭地表层土壤微生物丰度以及群落结构变化,0—10 cm土壤微生物比10—20 cm土壤微生物更加敏感。增温条件下微生物首先快速分解活性有机碳,同时温度升高加快土壤氮周转速率,增加有效氮含量。外源碳输入整体提高了深层土壤微生物丰度,使得10—20 cm土壤细菌、产甲烷菌、甲烷氧化菌、氨氧化细菌以及反硝化细菌丰度显著增加,说明外源碳输入可能会促进10—20 cm土壤甲烷氧化过程、氨氧化过程和反硝化过程。温度和葡萄糖的交互作用对泥炭地表层土壤碳氮循环关键微生物丰度均有显著影响。在增温和外源碳输入条件下,北方泥炭地表层土壤微生物丰度受土壤碳氮活性基质的影响。  相似文献   

5.
氮沉降持续增加背景下土壤C∶N∶P化学计量比和pH环境等的改变及其可能的土壤微生物学机制已经成为陆地生态系统与全球变化研究的新生长点和科学研究前沿.以生态化学计量学和土壤微生物生态学为理论基础,综述了氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制的基本理论、最新进展、研究热点与难点,旨在促进全球变化背景下陆地生态系统地下生态学的研究.氮沉降持续增加会导致森林生态系统磷循环加速,导致磷限制.氮沉降不但改变森林土壤有机质和凋落物的C∶N∶P化学计量比和降低土壤pH值,而且改变土壤微生物生物量碳氮磷、细菌、真菌和放线菌的组成以及影响碳氮磷分解的关键酶活性.氮沉降对森林土壤有机质和凋落物分解的影响表现为促进、抑制和无影响,其影响的差异可能来源于微生物效应的不同.叶片在凋落前有显著的氮磷养分回收,但是根无明显的养分回收,造成土壤有机质和凋落物的C∶N∶P化学计量比存在明显差异.基于DNA/RNA等分子生物学方法为土壤微生物生态学研究提供了强有力的手段,将促进氮沉降对森林土壤有机质和凋落物化学计量比改变的微生物学机制研究.  相似文献   

6.
尽管近年来中国氮(N)沉降水平逐渐趋于稳定,但中国东南地区N沉降相比于其他地区仍处于较高水平。N沉降对陆地生态系统碳循环过程的影响不容忽视。微生物碳利用效率(CUE)是指微生物将吸收的碳转化为生物量碳的效率,高微生物CUE意味着高土壤有机碳存储潜力。因此,探究N沉降背景下微生物CUE的变化将有助于进一步认识陆地生态系统土壤碳存储的变化。然而,目前关于N沉降下微生物群落结构的变化如何影响微生物CUE鲜有报道。在福建省泉州市戴云山国家级自然保护区的罗浮栲林通过N添加模拟N沉降。实验共包括三个N添加处理:对照(CT,+0 kg hm-2 a-1)、低氮(LN,+40 kg hm-2 a-1)和高氮(HN,+80 kg hm-2 a-1)。测定不同处理土壤基本理化性质、微生物生物量、酶活性和CUE,并使用高通量测序对微生物群落结构和多样性进行测定。结果表明,N添加显著影响微生物CUE,随着N添加水平的增加,CUE逐渐增加;相反,土壤pH、可提取有机碳(EOC)和微...  相似文献   

7.
在陆地生态系统中,深层土壤是重要的有机碳库.外源碳输入可改变土壤有机碳(SOC)矿化速率(激发效应),进而影响土壤碳排放.然而深层土壤对外源碳输入的响应程度和方向如何还不清楚,引起激发效应的机理尚不明确.本文利用13C标记葡萄糖添加试验,分析亚热带森林不同层次SOC矿化的激发作用,并通过微生物决策群落(r-K策略者)的相对变化来探讨激发效应的机理.结果表明: 深层土壤矿化速率显著低于表层土壤,添加标记葡萄糖后能增加所有层次土壤原有SOC的矿化(正激发效应),但是深层土壤的激发效应强度(156%)显著高于表层土壤(45%).葡萄糖添加显著降低了各层次土壤微生物的最大比生长速率,表明r策略者相对比例下降而K策略者相对比例增加.推测SOC矿化的正激发效应主要由K策略者的相对比例变化引起.此外,葡萄糖添加后可溶性有机碳和可溶性氮的比值在深层土壤中(76.03)显著高于表层土壤(13.00),暗示深层土壤存在更为强烈的氮限制作用.深层土壤微生物为获取氮源,可能会加剧对原有SOC的矿化,进而产生更强烈的激发效应.深层土壤SOC矿化受碳源和氮源的限制,更容易受外源碳输入的影响,对未来气候变化也更敏感.  相似文献   

8.
顾峰雪  黄玫  张远东  李洁  郭瑞  严昌荣 《生态学报》2017,37(8):2770-2778
由于人类活动影响,通过沉降和施肥方式进入生态系统的活性氮显著增加,其对土壤有机碳库产生重要影响。氮素利用效率(NUE)作为深入理解陆地生态系统碳氮耦合关系的重要参数,对NUE时空规律的研究不仅可以评估目前氮输入对陆地生态系统碳汇增加的贡献,同时也有助于预测未来氮输入情况下陆地生态系统的碳平衡。利用生态系统过程模型——CEVSA2模型的模拟结果,分析了东北地区氮输入情况下,土壤碳的氮素利用效率(SNUE)的时空变化规律及其影响因素,结果表明:(1)1961—2010年,氮输入的显著增加促进了土壤碳的蓄积,但SNUE显著下降;(2)森林的平均SNUE最高,农田最低;灌丛的下降速率最大,森林的SNUE变化趋势最不显著;(3)三江平原和长白山地区以及大小兴安岭的部分地区SNUE最大,其次是辽河平原、松嫩平原地区;内蒙古高原、呼伦贝尔高原地区以及大、小兴安岭的部分地区SNUE出现负值,说明在这些地区,外援氮输入抑制了土壤碳的蓄积;(4)氮输入的空间分异和不同生态系统响应氮输入的差异共同决定了SNUE及其变化的空间格局。该研究结果可为进一步分析不同区域氮促汇潜力和预测未来氮输入情景下的区域碳平衡提供参考。  相似文献   

9.
郭洁芸  王雅歆  李建龙 《生态学报》2022,42(12):4823-4833
近年来,中国大气氮沉降水平不断增加,过量的活性氮输入深刻影响了我国陆地生态系统碳循环。虽然已有大量的研究报道了模拟氮添加实验对我国陆地生态系统碳动态的影响,但是由于复杂的地理条件和不同的施氮措施,关于植物和土壤碳库对氮添加的一般响应特征和机制仍存在广泛争议。因此,采用整合分析方法,收集整理了172篇已发表的中国野外氮添加试验结果,在全国尺度上探究氮添加对我国陆地生态系统植物和土壤碳动态的影响及其潜在机制。结果表明,氮添加显著促进了植物的碳储存,地上和地下生物量均显著增加,且地上生物量比地下生物量增加得多。同时,氮添加显著增加了凋落物质量,但对细根生物量没有显著影响。氮添加显著降低了植物叶片、凋落物和细根的碳氮比。总体上,氮添加显著增加了土壤有机碳含量并降低了土壤pH值,但对可溶性有机碳、微生物生物量碳和土壤呼吸的影响并不显著。在不同的地理条件下,土壤有机碳含量对氮添加的响应呈现增加、减少或不变的不同趋势。回归分析表明,地上生物量与土壤有机碳含量之间,以及微生物生物量碳与土壤有机碳含量之间呈负相关关系。虽然氮添加通过增加凋落物质量显著促进了植物碳输入,但同时也会通过刺激微生物降解来增加土...  相似文献   

10.
氮沉降和放牧是影响草地碳循环过程的重要环境因子,但很少有研究探讨这些因子交互作用对生态系统呼吸的影响。在西藏高原高寒草甸地区开展了外源氮素添加与刈割模拟放牧实验,测定了其对植物生物量分配、土壤微生物碳氮和生态系统呼吸的影响。结果表明:氮素添加显著促进生态系统呼吸,而模拟放牧对其无显著影响,且降低了氮素添加的刺激作用。氮素添加通过提高微生物氮含量和土壤微生物代谢活性,促进植物地上生产,从而增加生态系统的碳排放;而模拟放牧降低了微生物碳含量,且降低了氮素添加的作用,促进根系的补偿性生长,降低了氮素添加对生态系统碳排放的刺激作用。这表明,放牧压力的存在会抑制氮沉降对高寒草甸生态系统碳排放的促进作用,同时外源氮输入也会缓解放牧压力对高寒草甸生态系统生产的负面影响。  相似文献   

11.
土壤碳库构成研究进展   总被引:40,自引:5,他引:35  
余健  房莉  卞正富  汪青  俞元春 《生态学报》2014,34(17):4829-4838
土壤碳库是陆地生态系统中最大的碳库。土壤碳库的构成影响其累积和分解,并直接影响全球陆地生态系统碳平衡,同时也影响土壤质量变化。弄清土壤碳库的组分及构成,是进一步研究土壤碳库变化机制的关键。综述了土壤碳库的组分和构成,对有机碳库进行不稳定性有机碳库和稳定有机碳库归类,描述各类碳库的性质,并对各类碳库的分析测定方法进行了评述。提出在土壤碳构成中增加黑碳和煤炭(碳)以完善土壤有机碳构成框架。在未来研究中,应加强土壤无机碳及湿地土壤和新开发新复垦的重构土壤碳库构成及变化,各类碳库化学构成,交叉重叠的定量关系,碳库之间的转化及在土壤中的迁移,黑碳对土壤碳库稳定性及土壤质量的影响,煤开采扰动区煤炭(碳)对土壤质量的影响及环境效应等科学问题的研究。  相似文献   

12.
滨海盐沼湿地是缓解全球变暖的有效蓝色碳汇, 但是近岸海域富营养化导致的大量氮输入对盐沼湿地稳定性和碳汇功能构成严重威胁。潮汐作用下大量氮输入对盐沼湿地植物光合碳输入、植物-土壤碳分配和土壤碳输出等碳循环关键过程产生深刻影响, 进而影响盐沼湿地碳汇功能评估的准确性。该文从植物光合固碳、植物-土壤系统碳分配、土壤有机碳分解、土壤可溶性有机碳释放、盐沼湿地土壤碳库5个方面综述了氮输入对盐沼湿地碳循环关键过程的影响。在此基础上, 针对当前研究的不足, 提出今后的研究中, 需要进一步探究氮输入对盐沼湿地植物光合固碳及碳分配过程的影响、盐沼湿地土壤有机碳分解的微生物机制、盐沼湿地土壤可溶性有机碳产生和横向流动的影响、以及氮类型对盐沼湿地土壤碳库的影响。以期为揭示氮输入对盐沼湿地碳汇形成过程与机制提供基础资料和理论依据, 为评估未来近岸海域水体富营养化影响下滨海盐沼湿地碳库的潜在变化提供新思路。  相似文献   

13.
氮输入对湿地生态系统碳氮循环具有重要影响,研究湿地土壤微生物功能多样性及碳氮组分对氮输入的响应,对于明确湿地土壤碳氮循环微生物驱动机制具有重要意义。依托长期野外氮输入模拟试验,利用Biolog-ECO微平板技术,分析不同浓度氮输入:N1(6 g N m-2 a-1)、N2(12 g N m-2 a-1)和N3(24 g N m-2 a-1)对湿地土壤表层(0-15 cm)和亚表层(15-30 cm)微生物碳源代谢活性、功能多样性和碳氮组分的影响。结果表明:N2处理显著提高了亚表层土壤微生物碳源代谢活性和McIntosh指数,N3处理显著降低了表层土壤微生物Shannon指数和Shannon-evenness指数。随氮输入浓度增加湿地表层土壤微生物对糖类的利用率显著降低,N3处理表层土壤微生物对胺类的利用率以及亚表层土壤微生物对醇类的利用率显著提高。N1处理显著提高了湿地表层土壤全氮和微生物量碳含量;N2、N3处理显著提高了土壤铵态氮、硝态氮含量;N3处理显著降低了土壤pH值。湿地土壤pH、总碳、溶解性有机碳含量是影响微生物碳源代谢活性和功能多样性的重要因素,土壤溶解性有机碳、铵态氮、全氮含量、含水率是影响微生物碳源利用变化的主要因子。  相似文献   

14.
在全球气候变暖的背景下, 草地作为陆地生态系统碳库的重要组成部分, 其较小幅度的波动, 会影响整个陆地生态系统碳循环和生态系统多功能性(EMF)。地上植物碳积累速率(CAR)表示从生长季初始到生长季生物量峰值的群落地上部分碳累积速率, 能够很好地表征固碳功能、固碳潜力和效率。因此, 植物CAR的变化会改变地上和地下群落维持EMF的能力。目前EMF的相关报道多探讨地上群落多样性和EMF的关系, 而缺乏高寒草地生态系统植被地上CAR对EMF的影响机制研究。该研究目的是探究高寒草地群落CAR对EMF的调控作用、机理和过程, 这将对草地生态系统管理提供理论支持, 并推进对生态系统多功能性维持机制的理解。2015年7-8月, 在青藏高原地区进行草地样带调查, 共计取115个样点。综合土壤有机碳、全氮、全磷、地上和地下生物量以及微生物生物量碳等13种生态系统参数计算生态系统多功能性指数(M)。利用归一化植被指数(NDVI, 1982-2013年)计算并提取2015年物候数据, 最终获得CAR。采用薄盘光滑样条插值法插值气象数据, 提取样点2011-2015年年降水量和年平均气温, 以供分析CAR对EMF的调控机理。主要结果: 地下生物量、土壤有机碳、全磷和微生物生物量碳含量对CARM有较高的权重(0.58、0.80、0.83和0.79; 1.05、0.98、1.02和0.97), CARM呈显著线性正相关关系(R2 = 0.45, p < 0.01)。在降水和气温要素的影响下, 植物地上群落和地下土壤要素的协同作用, 影响植被CAR, 进一步调控EMF。  相似文献   

15.
氮沉降对森林生态系统土壤碳库的影响   总被引:10,自引:0,他引:10  
邓小文  韩士杰 《生态学杂志》2007,26(10):1622-1627
森林土壤碳库是陆地生态系统碳库的重要组成部分,对维持全球碳平衡具有重要意义。不断加剧的全球氮沉降有可能改变森林生态系统中碳元素的地球化学循环过程,从而引起森林土壤碳储量的变化。本文从森林土壤碳收支的角度,将氮沉降对森林生态系统土壤碳库影响的复杂过程划分为凋落物分解、细根周转、土壤呼吸和土壤可溶性有机碳淋失4个相对独立的过程。综合国内外研究现状,对其进行了简要评述,指出了目前研究的不足,并探讨了这一研究领域的发展方向。  相似文献   

16.
程淑兰  方华军  徐梦  耿静  何舜  于光夏  曹子铖 《生态学报》2018,38(23):8285-8295
大气氮沉降增加倾向于促进受氮限制陆地生态系统地上生物量,但是对地下碳过程和土壤碳截存的影响结果迥异,导致陆地生态系统“氮促碳汇”的评估存在很大的不确定性。大气氮沉降输入直接影响微生物活性或间接影响底物质量,改变凋落物和土壤有机质(SOM)的分解速率和分解程度,进而影响土壤有机碳(SOC)的积累与损耗过程。过去相关研究主要集中在土壤碳转化过程和碳储量动态方面,缺乏植物-微生物-SOM交互作用的理解,对土壤碳截存调控的生物化学和微生物学机理尚不清楚。本文以地下碳循环过程为主线,分别综述了氮沉降增加对植物地下碳分配、SOC激发效应、微生物群落碳代谢过程的影响,深入分析SOM化学稳定性与微生物群落动态的关系。该领域研究的薄弱环节体现在:(1)增氮倾向于降低根系的生长和周转,对根际沉积碳分配(数量和格局)的影响及驱动因素不明确;(2)虽然认识到氮素有效性影响土壤激发效应的方向和强度,但是氧化态NO-3和还原态NH+4输入对有机质激发效应的差异性影响及潜在机理知之甚少;(3)微生物碳利用效率(CUE)是微生物群落碳代谢的关键表征,能够很好地解释土壤碳的积累与损耗过程;由于缺乏适宜的测定方法,难以准确量化土壤微生物的CUE及微生物生物量的周转时间;(4)增氮会抑制土壤真菌群落及其胞外酶活性,对细菌群落组成的影响尚未定论,有关SOM化学质量与土壤微生物群落活性、组成之间的耦合关系尚不清楚。未来研究应基于长期的氮添加控制实验平台,结合碳氧稳定性同位素示踪、有机质化学、分子生物学和宏基因组学等方法,深入分析植物同化碳的地下分配规律、微生物碳代谢和周转、有机质化学结构与功能微生物群落的耦合关系等关键环节。上述研究将有助于揭示植物-土壤-微生物交互作用对SOC动态的调控机制,完善陆地生态系统碳-氮耦合循环模型,有效降低区域陆地碳汇评估的不确定性,并可为陆地生态系统应对全球变化提供科学依据。  相似文献   

17.
微生物分解者的生存和生长策略、群落结构和功能会随着底物化学计量特征而改变, 从而强烈地影响底物的分解速度和元素的周转速率, 进而影响生态系统的功能过程。深入理解微生物生理代谢活动和群落结构与陆地生态系统过程之间的联系及其对全球变化的响应和反馈机理是生态学和全球变化生物学领域值得关注的重大科学命题。该文基于生态化学计量学理论和代谢理论, 首先介绍微生物在陆地生态系统碳氮磷循环中的作用; 然后综述微生物对分解底物化学计量变异性的响应和调节的4种主要机制: (1)调整微生物自身化学计量特征; (2)调整微生物群落结构; (3)产生特定的胞外酶以获取受限制的资源; (4)改变碳氮磷元素利用效率。最后, 通过分析当前研究不足, 提出该领域亟需关注的科学问题有: (1)综合阐明微生物对底物化学计量变化响应的各种机制及其相对重要性; (2)探索全球变化对微生物驱动的碳氮磷循环的影响; (3)探索微生物对底物化学计量变化适应对策的时空变化。  相似文献   

18.
《植物生态学报》2016,40(6):620
The survival and growth strategies, community structure and functions of microbial decomposers vary with substrate stoichiometry, which profoundly influences substrate decomposition, turnover, and hence the carbon and nutrient cycles of terrestrial ecosystems. It is crucial to understand the relationships among microbial metabolism, community structure and ecosystem processes of terrestrial ecosystems and their responses and feedbacks to global changes. In this review, we first introduced the significance of microbial decomposers in the carbon, nitrogen, and phosphorus cycles of terrestrial ecosystems from perspectives of ecological stoichiometry and metabolic theories. Then we synthesized four potential mechanisms of microbial response and control on substrate stoichiometric variations, i.e., through (1) modifying microbial stoichiometry, (2) shifting microbial community structure, (3) producing extracellular enzymes to acquire limiting resources, and (4) changing microbial carbon, nitrogen, and phosphor use efficiencies. Finally, we proposed three research directions in this field: (1) to comprehensively explore various microbial mechanisms in response to changes in substrate stoichiometry and the relative importance of these mechanisms; (2) to examine influences of global changes on microbial-driven cycles of carbon, nitrogen, and phosphorus; and (3) to explore spatiotemporal changes in the strategies of microbial adaptation to changes in the substrate stoichiometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号