首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
探讨外源养分的输入对土壤系统内碳、氮、磷化学计量特征的影响,对于深刻认识农田土壤有机碳(C)和养分循环及其相互作用过程具有重要意义。以26年的农田长期定位施肥试验为平台,分析长期不同施肥条件下土壤、有机态及微生物生物量碳、氮、磷含量及其化学计量学特征,并根据内稳性模型y=c x~(1/H)计算其化学计量内稳性指数H。结果表明:与长期撂荒处理(CK_0)相比,种植作物条件下26年化肥配施有机肥处理(MNPK和1.5MNPK)显著降低微生物生物量氮含量,但显著提高了微生物生物量磷的含量。相对于撂荒处理,即使长期配施化肥磷处理(NP、PK、NPK),其土壤有机磷降低显著。对于C∶N比而言,化肥配施有机物料处理(秸秆或有机肥)的土壤C∶N比、有机质C∶N及微生物生物量C∶N比均显著低于化肥处理(N、NP、PK和NPK)。对于C∶P比而言,相对于撂荒处理,26年施用磷肥(化肥磷或有机磷)显著降低了土壤C∶P比和微生物生物量C∶P比,而CK和偏施化肥处理(N、NP和PK)显著降低了土壤有机质C∶P比。对于土壤N∶P比而言,撂荒处理土壤N∶P比显著高于其他处理,而撂荒处理土壤有机质N∶P比显著高于CK和化肥处理,表明不施肥或化肥条件下作物种植加剧了土壤有机质中氮素的消耗。微生物生物量C∶N、C∶P、N∶P比的内稳性指数H分别为0.24、0.75、0.64,不具有内稳性特征。微生物生物量C∶N、C∶P、N∶P比分别与土壤C∶N、C∶P、N∶P比呈显著正相关关系,但与土壤有机质碳氮磷化学计量比之间无显著相关性。表明土壤碳、氮、磷元素的改变会直接导致微生物生物量碳、氮、磷化学计量比的改变,但微生物生物量碳氮磷化学计量比对土壤有机质碳氮磷化学计量比无显著影响,土壤有机质的碳氮磷计量比可能更多是受到作物和施肥等养分管理措施的影响。  相似文献   

2.
凋落物输入刺激土壤胞外酶的分泌,加快凋落物中碳(C)、氮(N)、磷(P)等养分释放,但不同基质质量凋落物输入如何调控土壤胞外酶活性和酶化学计量特征仍不清晰。本研究以亚热带10年生米槠和杉木人工林为研究对象,采用凋落物输入原位微宇宙试验,分析了2021年4—8月、10月和12月不同凋落物输入对β-葡萄糖苷酶、纤维二糖水解酶、β-N-乙酰氨基葡萄糖苷酶、亮氨酸氨基肽酶和酸性磷酸酶(AP)5种土壤胞外酶活性及其化学计量特征的影响。结果表明:1)与无凋落物输入相比,米槠人工林凋落物输入对土壤酶活性、酶化学计量和矢量特征均无显著影响;而杉木人工林凋落物输入使5月土壤AP活性显著提高1.7%,使8月酶化学计量碳氮比、10月酶化学计量碳磷比和氮磷比分别降低3.8%、11.7%和10.3%,使10月土壤酶向量角增加到53.8°,表明土壤微生物存在显著磷限制。2)偏最小二乘回归分析表明,土壤可溶性有机质和微生物生物量C、N分别是米槠和杉木人工林土壤胞外酶活性响应凋落物输入的主要影响因子。总体上,低质量(高C/N)的杉木凋落物输入在短期内更能刺激土壤胞外酶的分泌,加快凋落物分解,研究区域土壤微生物受到磷限...  相似文献   

3.
模拟N沉降对森林生态系统的影响是当今全球变化生态学研究的一个热点问题,土壤碳库对N沉降比较敏感,N沉降增加了凋落叶分解过程中外源N含量,间接影响凋落叶分解的化学过程并改变凋落叶分解速率,因此,研究模拟N沉降下凋落叶分解-土壤C-N关系对预测森林C吸存有重要意义。利用原位分解袋法研究了模拟N沉降下三峡库区不同林龄马尾松林(Pinus massoniana)凋落叶分解过程中凋落叶-土壤C、N化学计量响应及其关系;N沉降水平分对照(CK,0 g m~(-2)a~(-1))、低氮(LN,5 g m~(-2)a~(-1))、中氮(MN,10 g m~(-2)a~(-1))和高氮(HN,15 g m~(-2)a~(-1))。结果表明:分解540 d后,N沉降促进20年生和30年生马尾松林凋落叶分解,46年生马尾松林中仅低氮处理促进凋落叶分解,4种处理均是30年生分解最快,说明同一树种起始N含量低的凋落叶对N沉降呈正响应,N沉降处理促进起始N含量低的凋落叶分解,起始N含量高的凋落叶分解过程中易达到"N饱和"。N沉降抑制20年生和46年生凋落叶C释放(低于对照0.62%—6.69%),促进30年生C释放(高于对照0.28%—5.55%);30年生和46年生林分N固持量均高于对照(高于对照0.15%—21.34%),20年生则低于对照(5.70%—13.87%),说明模拟N沉降处理促进起始C含量低的凋落叶C释放和起始N含量低的凋落叶N固持。N沉降处理下仅30年生马尾松林土壤有机碳较对照增加,且土壤有机质与凋落叶C、N和分解速率呈正相关,与凋落叶C/N比呈显著负相关;土壤总氮与凋落叶分解速率、凋落叶N含量呈正相关,土壤有机碳/总氮比与凋落叶C、N含量呈正相关;对照处理中凋落叶分解指标对土壤养分影响顺序是分解速率凋落物C含量凋落物C/N比凋落物N含量,低、中、高氮处理中则是凋落物C含量分解速率凋落物N含量凋落物C/N比。研究表明低土壤养分含量马尾松林对N沉降呈正响应,N沉降促进低土壤养分马尾松林凋落叶分解并提高土壤肥力;凋落叶质量和土壤养分含量低的生态系统土壤C对N沉降响应更显著。  相似文献   

4.
栾历历  刘恩媛  顾新  孙建新 《生态学报》2020,40(24):9220-9233
全球变化会引起凋落物质量和数量的变化以及氮沉降增加,从而影响土壤养分循环。土壤生态酶化学计量可以揭示微生物生长和代谢过程的养分限制,但目前温带混交林土壤生态酶化学计量对凋落物输入和氮添加同时改变的响应还不清楚。通过凋落物处理和氮添加实验设计,探讨温带松栎混交林生态酶化学计量的响应以及影响生态酶化学计量的主要因子。结果表明:(1)凋落物处理和氮添加无显著交互作用,土壤生态酶化学计量在氮添加处理下差异不显著,在凋落物处理下差异显著,表现为叶凋落物加倍(L)和混合凋落物加倍(LB)处理高于枝果凋落物加倍(B)和去除凋落物处理(N)。不同凋落物和氮添加处理下,土壤生态酶化学计量均未明显偏离1:1:1的关系。(2)土壤微生物碳利用效率(CUEC:N和CUEC:P)表现为叶凋落物加倍和混合凋落物加倍处理低于枝果凋落物加倍和去除凋落物处理,在氮添加处理下差异不显著。土壤微生物氮利用效率(NUEN:C)和微生物磷利用效率(PUEP:C)在不同凋落物和氮添加处理下差异均不显著。TERC:N在不同凋落物和氮添加处理下差异均不显著,TERC:P表现为叶凋落物加倍和混合凋落物加倍处理高于枝果凋落物加倍和去除凋落物处理。(3)RDA分析表明土壤pH是影响土壤胞外酶活性和生态酶化学计量的主要因子。研究表明:凋落物的质和量对松栎混交林土壤生态酶化学计量的影响较氮添加显著,可能氮添加对森林土壤微生物的作用机制并非一个瞬间或简单的过程。凋落物的质和量会改变土壤养分状况,而微生物会通过调节生态酶化学计量和养分利用效率对养分变异做出响应,叶凋落物的输入相对缓解了P的限制。凋落物处理和氮添加下土壤的非生物因子比生物因子更能影响土壤胞外酶活性和生态酶化学计量。研究可为土壤微生物对全球变化的响应提供理论依据。  相似文献   

5.
为探究不同海拔森林土壤氮组分对土壤-植物-凋落物化学计量特征的响应规律,选取太白山1300~2600 m海拔范围内4种典型森林--锐齿栎林(Quercus aliena var.acuteserrata)、辽东栎林(Quercus liaotungensis)、红桦林(Betula albo-sinensis)、牛皮桦林(Betula albo-sinensis var.septen-trionalis)为研究对象,测定土壤、叶片、凋落物、根的碳(C)、氮(N)、磷(P)及土壤铵态氮、硝态氮、微生物生物量氮,分析不同森林土壤、植物、凋落物的化学计量比值的变化特征及其对氮组分的影响。结果表明:1)4种森林土壤C、N、P含量的变化范围分别为36.77~59.80、2.91~4.76、0.13~0.80 g·kg^-1。C、N含量在不同森林间变化趋势基本一致,均表现为牛皮桦林>红桦林>辽东栎林>锐齿栎林;P含量的变化趋势表现为辽东栎林>牛皮桦林>红桦林>锐齿栎林;2)锐齿栎林叶片N∶P<14,表明锐齿栎林生长较大程度受N限制;辽东栎林、红桦林、牛皮桦林叶片N∶P>16,表明辽东栎林、红桦林、牛皮桦林生长较大程度受P限制;3)不同森林间微生物量氮差异显著(P<0.05),铵态氮含量无显著差异,硝态氮含量表现为锐齿栎林(0.33 mg·kg^-1)>牛皮桦林(0.28 mg·kg^-1)>辽东栎林(0.27 mg·kg^-1)>红桦林(0.17 mg·kg^-1);4)冗余分析结果表明,土壤-植物-凋落物N∶P值是影响土壤微生物量氮的重要因子,土壤C∶N是影响铵态氮、硝态氮含量的重要因子。本研究结果为太白山森林生态系统的保护和氮循环研究奠定基础。  相似文献   

6.
氮沉降对森林生态系统土壤碳库的影响   总被引:10,自引:0,他引:10  
邓小文  韩士杰 《生态学杂志》2007,26(10):1622-1627
森林土壤碳库是陆地生态系统碳库的重要组成部分,对维持全球碳平衡具有重要意义。不断加剧的全球氮沉降有可能改变森林生态系统中碳元素的地球化学循环过程,从而引起森林土壤碳储量的变化。本文从森林土壤碳收支的角度,将氮沉降对森林生态系统土壤碳库影响的复杂过程划分为凋落物分解、细根周转、土壤呼吸和土壤可溶性有机碳淋失4个相对独立的过程。综合国内外研究现状,对其进行了简要评述,指出了目前研究的不足,并探讨了这一研究领域的发展方向。  相似文献   

7.
随着人类干扰和全球变化的加剧,大气氮沉降量迅速地增加,对草地生态系统碳循环过程产生了显著影响。凋落物分解是陆地生态系统养分循环的关键过程,也是土壤碳库的主要来源和维持土壤肥力的基础。凋落物分解深受非生物、生物因子及其交互作用的影响。氮沉降通过影响土壤氮有效性、凋落物产量和质量、土壤生物因子及凋落物分解环境来影响分解。该文综述了氮沉降对草地凋落物分解过程的影响及其机理,包括对土壤氮有效性,凋落物产量、质量,土壤微生物和酶活性以及凋落物分解环境的影响,在系统分析国内外研究现状的基础上,探讨整合了目前氮沉降影响草地凋落物分解的主要研究内容、方向、方法以及存在的主要问题,并对未来的重点研究方向进行了展望,以期为深入研究草地生态系统碳循环过程与氮沉降之间的相互作用与反馈机制提供参考。  相似文献   

8.
季节性雪被变化对森林凋落物分解及土壤氮动态的影响   总被引:2,自引:0,他引:2  
全球气候变化引发的雪被格局变化将深刻影响植被的凋落物分解、陆地生态系统的土壤养分循环等过程.森林是陆地生态系统的主体,在全球生物地球化学循环中起着不可替代的作用.本研究综述了季节性雪被变化对森林凋落物分解及土壤氮动态的影响.全球气候变化情景下季节性雪被表现出因地域而异的增加或减少的变化格局,一方面通过改变环境温湿度、凋落物质量、分解者动态等直接影响分解过程,另一方面通过改变森林群落结构、植被物候、土壤养分等间接地作用于凋落物分解.同时,季节性雪被通过影响氮富集作用、雪被下土壤温湿度、冻融循环、森林群落、雪下动物和微生物等相关因子而改变森林土壤氮循环.本领域未来应开展的研究是: 1) 全面考虑全球气候变化情景下季节性雪被格局的变异性,开展不同季节性雪被格局变化的模拟研究;2) 开展季节性雪被融雪水淋溶作用对森林凋落物分解和土壤氮动态的影响研究;3) 阐明不同生态系统和气候带中季节性雪被格局变化对森林凋落物分解过程和土壤氮动态的驱动机制研究;4) 量化季节性雪被变化对森林凋落物分解和土壤氮动态在雪被覆盖期的瞬时影响和无雪期的延续影响,为阐明和模型预测陆地生态系统生物地球化学循环对全球气候变化的响应提供理论基础和数据支持.  相似文献   

9.
凋落物分解的快慢和养分释放的速度决定了生态系统中土壤有效养分的供应。探讨全球变化条件下森林生态系统凋落物与土壤养分的变化规律,有利于深入认识凋落物-土壤相互作用的养分调控因素,从而揭示生态系统C、N、P循环。通过模拟氮沉降增加试验,分4个水平处理,分别为0、60、120、240 kg N hm~(-2)a~(-1)。模拟氮沉降13年后,分析了杉木人工林凋落物中不同组分(落叶、落枝、落果)生态化学计量与土壤有效养分(有效氮、碱解氮、速效磷、速效钾)的关系。结果表明:氮沉降(N1、N2和N3)显著提高了落叶和落枝的N含量,平均增幅分别为35.27%和32.21%;高水平氮沉降(N3)处理显著降低了落叶和落枝的C/N,平均降幅分别为25.95%和22.32%,但N3增加了落枝和落果N/P,平均增幅分别为38.4%和31.7%;氮沉降对凋落物各组分的C、P和C/P均影响不显著。氮沉降处理显著增加了土壤NO_3~--N和NH_4~+-N含量,均表现为N3N2N1N0,其中NO_3~--N含量更容易受氮沉降处理的影响,表现为更大的增幅。N2显著增加0—20 cm土层的碱解氮含量,N1显著降低0—20 cm土层的速效钾,但氮沉降对速效磷含量没有影响。凋落物生态化学计量与土壤有效养分之间的Pearson相关和冗余分析(RDA)表明,凋落物生态化学计量与土壤有效养分之间关系紧密,凋落物P含量(蒙特卡罗检验,P=0.018)和C/P比值(P=0.037)对土壤有效养分影响显著。凋落物中C/N比值、C/P比值与土壤有效养分呈显著负相关,其比值越高越不利于土壤有效养分的累积。  相似文献   

10.
降水变化和氮沉降影响森林叶根凋落物分解研究进展   总被引:1,自引:0,他引:1  
谭向平  申卫军 《生态学报》2021,41(2):444-455
全球环境变化通过改变凋落物质量和产量、土壤生物以及非生物因子调控森林凋落物分解,从而对森林生态系统物质和能量循环产生重要的影响。就森林凋落物分解对当前我国面临降水格局变化和大气氮沉降增加的响应进行了回顾和系统的分析,发现降水格局改变如降水减少可能降低凋落物质量从而减缓凋落物分解,而氮沉降增加通常提高凋落物质量从而促进凋落物分解(间接效应);降水格局改变通过调节土壤含水量和溶解氧含量进而影响微生物参与的分解过程,或通过改变可溶性组分的淋溶量来影响凋落物分解的物理过程,而氮沉降增加主要通过提高外源氮素的有效性从而促进或抑制微生物参与的分解过程(直接效应)。现有研究大多是基于地上凋落物(例如叶凋落物)来理解和量化森林凋落物分解速率与环境因子之间的关系。但目前对降水格局变化及其与大气氮沉降增加的交互作用如何影响森林地上和地下凋落物分解,以及潜在的微生物学机制仍然缺乏统一和清晰的认识。从土壤性质、凋落物质量、微生物群落结构和功能3个方面构建了环境变化对森林地上和地下凋落物分解的概念框架,并进一步阐述未来研究的重点方向:(1)亟需查明地上和地下凋落物分解的驱动机制;(2)探明降水格局变化和氮添加单因子及两因子交互作用对凋落物分解和养分释放的影响及其生物化学调控机理;(3)阐明微生物群落结构和功能对降水格局变化和氮添加单因子及两因子交互的响应机制。以期为深入探讨全球环境变化对森林凋落物分解的影响,以及环境胁迫下森林土壤"碳库"维持机制的解释提供科学依据。  相似文献   

11.
林婉奇  薛立 《生态学报》2020,40(12):4188-4197
土壤微生物是有机物分解和养分循环的主要介质,因此在维持土壤的功能多样性和持续性方面发挥着关键作用。气候变化驱动因素会影响土壤微生物的生理活动,引起其群落结构和功能多样性的改变,并对生物地球化学循环和气候―生态系统反馈产生连锁效应,其中氮沉降和降水是全球气候变化的研究热点。土壤氮(N)的有效性有可能通过改变微生物的群落组成以调节微生物对降水变化的响应,但目前关于N沉降和降水及其交互作用对土壤微生物群落功能多样性的影响机制仍不清楚。为了准确预测未来气候条件下生态系统的功能状况,需要更好地了解土壤微生物对环境变化的响应。基于BIOLOG技术综述了氮沉降和降水变化及其交互作用对土壤微生物功能多样性影响的相关研究进展,可以为进一步研究全球气候变化背景下地下生态学的发展提供参考。另外,分析阐述了当前工作中存在的一些主要瓶颈,并对未来的研究热点进行了探讨和展望。  相似文献   

12.
氮、磷养分有效性对森林凋落物分解的影响研究进展   总被引:5,自引:0,他引:5  
通过对相关研究文献的综述结果表明,氮(N)和磷(P)是构成蛋白质和遗传物质的两种重要组成元素,限制森林生产力和其他生态系统过程,对凋落物分解产生深刻影响。大量的凋落物分解试验发现在土壤N有效性较低的温带和北方森林,凋落物分解速率常与底物初始N浓度、木质素/N比等有很好的相关关系,也受外源N输入的影响;而在土壤高度风化的热带亚热带森林生态系统中,P可能是比N更为重要的分解限制因子。然而控制试验表明,N、P添加对凋落物分解速率的影响并不一致,既有促进效应也有抑制效应。为了深入揭示N、P养分有效性对凋落物分解的调控机制,"底物的C、N化学计量学"假说、"微生物的N开采"假说以及养分平衡的理论都常被用于解释凋落物分解速率的变化。由于微生物分解者具有较为稳定的C、N、P等养分需求比例,在不同的养分供应的周围环境中会体现出不同的活性,某种最缺乏的养分可能就是分解的最重要限制因子。未来的凋落物分解研究,应延长实验时间、加强室内和野外不同条件下的N、P等养分添加控制试验,探讨驱动分解进程的微生物群落结构和酶活性的变化。  相似文献   

13.
The effects of atmospheric nitrogen (N) deposition on organic matter decomposition vary with the biochemical characteristics of plant litter. At the ecosystem‐scale, net effects are difficult to predict because various soil organic matter (SOM) fractions may respond differentially. We investigated the relationship between SOM chemistry and microbial activity in three northern deciduous forest ecosystems that have been subjected to experimental N addition for 2 years. Extractable dissolved organic carbon (DOC), DOC aromaticity, C : N ratio, and functional group distribution, measured by Fourier transform infrared spectra (FTIR), were analyzed for litter and SOM. The largest biochemical changes were found in the sugar maple–basswood (SMBW) and black oak–white oak (BOWO) ecosystems. SMBW litter from the N addition treatment had less aromaticity, higher C : N ratios, and lower saturated carbon, lower carbonyl carbon, and higher carboxylates than controls; BOWO litter showed opposite trends, except for carbonyl and carboxylate contents. Litter from the sugar maple–red oak (SMRO) ecosystem had a lower C : N ratio, but no change in DOC aromaticity. For SOM, the C : N ratio increased with N addition in SMBW and SMRO ecosystems, but decreased in BOWO; N addition did not affect the aromaticity of DOC extracted from mineral soil. All ecosystems showed increases in extractable DOC from both litter and soil in response to N treatment. The biochemical changes are consistent with the divergent microbial responses observed in these systems. Extracellular oxidative enzyme activity has declined in the BOWO and SMRO ecosystems while activity in the SMBW ecosystem, particularly in the litter horizon, has increased. In all systems, enzyme activities associated with the hydrolysis and oxidation of polysaccharides have increased. At the ecosystem scale, the biochemical characteristics of the dominant litter appear to modulate the effects of N deposition on organic matter dynamics.  相似文献   

14.
探讨长期不同施肥制度对农田土壤、植物生态系统的碳(C)、氮(N)、磷(P)含量及其生态化学计量比的影响,可为揭示该系统能量平衡和养分循环,实现农业生态系统元素平衡及可持续发展提供参考意义。以位于黄土高原半干旱地区的长武国家黄土高原农业生态实验站长期施肥试验为研究对象,选取不施肥(CK)、单施氮肥(N)、单施磷肥(P)、施氮磷肥(NP)、单施有机肥(M)、氮肥配施有机肥(NM)、磷肥配施有机肥(PM)、氮磷肥配施有机肥(NPM)8个处理,分析了黄土旱塬典型农田土壤-微生物-植物生态系统中C、N、P含量及其生态化学计量变化规律。研究结果表明:1)长期单施有机肥和化肥配施有机肥处理可显著提高土壤和有机质C、N、P含量。2)氮、磷肥的输入显著降低了土壤和小麦C∶N、N∶P,施P显著降低了有机态C∶P和小麦C∶P;有机肥配施对微生物生物量和小麦C∶N∶P的影响更为明显。3)长期有机肥配施条件下土壤养分和小麦化学计量比存在较强的相关关系。微生物生物量碳与有机C、N、P呈显著正相关,土壤微生物生物量氮与土壤N、P总量呈显著正相关,微生物生物量磷与土壤C、N、P总量含量呈显著负相关;植株碳含量与微生物...  相似文献   

15.
郭洁芸  王雅歆  李建龙 《生态学报》2022,42(12):4823-4833
近年来,中国大气氮沉降水平不断增加,过量的活性氮输入深刻影响了我国陆地生态系统碳循环。虽然已有大量的研究报道了模拟氮添加实验对我国陆地生态系统碳动态的影响,但是由于复杂的地理条件和不同的施氮措施,关于植物和土壤碳库对氮添加的一般响应特征和机制仍存在广泛争议。因此,采用整合分析方法,收集整理了172篇已发表的中国野外氮添加试验结果,在全国尺度上探究氮添加对我国陆地生态系统植物和土壤碳动态的影响及其潜在机制。结果表明,氮添加显著促进了植物的碳储存,地上和地下生物量均显著增加,且地上生物量比地下生物量增加得多。同时,氮添加显著增加了凋落物质量,但对细根生物量没有显著影响。氮添加显著降低了植物叶片、凋落物和细根的碳氮比。总体上,氮添加显著增加了土壤有机碳含量并降低了土壤pH值,但对可溶性有机碳、微生物生物量碳和土壤呼吸的影响并不显著。在不同的地理条件下,土壤有机碳含量对氮添加的响应呈现增加、减少或不变的不同趋势。回归分析表明,地上生物量与土壤有机碳含量之间,以及微生物生物量碳与土壤有机碳含量之间呈负相关关系。虽然氮添加通过增加凋落物质量显著促进了植物碳输入,但同时也会通过刺激微生物降解来增加土...  相似文献   

16.
There is growing interest in understanding how declining soil fertility in the prolonged absence of major disturbance drives ecological processes, or ‘ecosystem retrogression’. However, there are few well characterized study systems for exploring this phenomenon in the tropics, despite tropics occupying over 40% of the Earth's terrestrial surface. We studied two types of montane rain forest in the Blue Mountains of Jamaica that represent distinct stages in ecosystem development, i.e. an earlier stage with shallow organic matter and a late stage with deep organic matter (hereafter ‘mull’ and ‘mor’ stages). We characterized responses of soil fertility and plant, soil microbial and nematode communities to the transition from mull to mor and whether these responses were coupled. For soil abiotic properties, we found this transition led to lower amounts of both nitrogen (N) and phosphorus (P) and an enhanced N to P ratio. This led to shorter‐statured and less diverse forest, and convergence of tree species composition among plots. At the whole community (but not individual species) level foliar and litter N and P diminished from mull to mor, while foliar N to P and resorption efficiency of P relative to N increased, indicating increasing P relative to N limitation. We also found impairment of soil microbes (but not nematodes) and an increasing role of fungi relative to bacteria during the transition. Our results show that retrogression phenomena involving increasing nutrient (notably P) limitation can be important drivers in tropical systems, and are likely to involve aboveground–belowground feedbacks whereby plants produce litter of diminishing quality, impairing soil microbial processes and thus reducing the supply of nutrients from the soil for plant growth. Such feedbacks between plants and the soil, mediated by plant litter and organic matter quality, may serve as major though often overlooked drivers of long term environmental change.  相似文献   

17.
Mechanisms of plant species impacts on ecosystem nitrogen cycling   总被引:16,自引:0,他引:16  
Plant species are hypothesized to impact ecosystem nitrogen cycling in two distinctly different ways. First, differences in nitrogen use efficiency can lead to positive feedbacks on the rate of nitrogen cycling. Alternatively, plant species can also control the inputs and losses of nitrogen from ecosystems. Our current understanding of litter decomposition shows that most nitrogen present within litter is not released during decomposition but incorporated into soil organic matter. This nitrogen retention is caused by an increase in the relative nitrogen content in decomposing litter and a much lower carbon‐to‐nitrogen ratio of soil organic matter. The long time lag between plant litter formation and the actual release of nitrogen from the litter results in a bottleneck, which prevents feedbacks of plant quality differences on nitrogen cycling. Instead, rates of gross nitrogen mineralization, which are often an order of magnitude higher than net mineralization, indicate that nitrogen cycling within ecosystems is dominated by a microbial nitrogen loop. Nitrogen is released from the soil organic matter and incorporated into microbial biomass. Upon their death, the nitrogen is again incorporated into the soil organic matter. However, this microbial nitrogen loop is driven by plant‐supplied carbon and provides a strong negative feedback through nitrogen cycling on plant productivity. Evidence supporting this hypothesis is strong for temperate grassland ecosystems. For other terrestrial ecosystems, such as forests, tropical and boreal regions, the data are much more limited. Thus, current evidence does not support the view that differences in the efficiency of plant nitrogen use lead to positive feedbacks. In contrast, soil microbes are the dominant factor structuring ecosystem nitrogen cycling. Soil microbes derive nitrogen from the decomposition of soil organic matter, but this microbial activity is driven by recent plant carbon inputs. Changes in plant carbon inputs, resulting from plant species shifts, lead to a negative feedback through microbial nitrogen immobilization. In contrast, there is abundant evidence that plant species impact nitrogen inputs and losses, such as: atmospheric deposition, fire‐induced losses, nitrogen leaching, and nitrogen fixation, which is driven by carbon supply from plants to nitrogen fixers. Additionally, plants can influence the activity and composition of soil microbial communities, which has the potential to lead to differences in nitrification, denitrification and trace nitrogen gas losses. Plant species also impact herbivore behaviour and thereby have the potential to lead to animal‐facilitated movement of nitrogen between ecosystems. Thus, current evidence supports the view that plant species can have large impacts on ecosystem nitrogen cycling. However, species impacts are not caused by differences in plant quantity and quality, but by plant species impacts on nitrogen inputs and losses.  相似文献   

18.
Microbial enzymes play a critical role in organic matter decomposition and enzyme activity can dynamically respond to shifts in inorganic nutrient and substrate availability, reflecting the nutrient and energy limitation of the microbial community. We characterized microbial enzyme response to shifting nitrogen (N) and phosphorus (P) availability across terrestrial and aquatic environments at the Bear Brook Watershed in Maine, the site of a whole-watershed N enrichment experiment. We compared activity of β-1,4-glucosidase (BG); β-1,4-N-acetylglucosaminidase (NAG); acid phosphatase (AP) in soil, leaf litter in terrestrial and stream habitats and stream biofilms in a reference and N enriched watershed, representing whole-ecosystem response to chronic N enrichment. In addition, we used shorter, experimental P enrichments to address potential P limitation under ambient and elevated N availability. We found that BG and NAG activity were not affected by the long-term N enrichment in either habitat. Enhanced P limitation due to N enrichment was evident only in the aquatic habitats with 5- and 8-fold higher treated watershed AP activity in stream biofilms and stream litter, respectively. Acute P additions reduced AP activity and increased BG activity and these effects were also most pronounced in the streams. The stoichiometry of enzyme activity was constrained across ecosystem compartments with regression slopes for lnBG:lnNAG, lnBG:lnAP, and lnNAG:lnAP close to 1, ranging 1.142–1.241. We found that microbial enzyme response to shifting N and P availability varied among watershed compartments, typically with stronger effects in aquatic habitats. This suggests that understanding the response of ecosystem function to disturbance at the watershed scale requires simultaneous consideration of all compartments.  相似文献   

19.
氮沉降改变了草地生态系统的氮(N)素循环过程,由此带来的生态学效应已成为当前研究的热点。以乌鲁木齐周边短期围封草地为研究对象,通过模拟氮沉降实验,分析了自由放牧地和围封草地土壤酶活性和微生物组成,结合土壤养分及化学计量特征,探讨了氮沉降对短期围封草地土壤微生物组成及酶活性的影响,为该地区放牧草地的保护、恢复及管理提供理论依据。结果表明:(1)土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量随围封年限的增加总体呈升高趋势,表明围封有利于提高土壤养分含量。与中国草地平均值相比,该草地土壤碳氮比(C/N)相对较高,碳磷比(C/P)、氮磷比(N/P)相对较低,表明该草地土壤有机质分解良好,有利于土壤碳(C)、磷(P)的释放,而土壤N素较为缺乏。(2)就不同围封年限而言,围封3年草地5-20cm层土壤真菌数量高于其它样地;围封3年草地表层土壤蔗糖酶与过氧化氢酶活性最高;围封7年草地放线菌数量最多,说明围封能够促进土壤微生物生长及酶活性的提高。(3)氮素添加对土壤真菌具有抑制作用,N5(4.6gN m-2 a-1)、N10(9.8gN m-2 a-1)处理显著增加了各样地土壤细菌数量,氮素添加对围封7年草地0-10cm层土壤放线菌无显著影响,而氮沉降显著增加了其它样地5-20cm层土壤放线菌数量,其中N5、N10处理下促进作用最明显;氮素添加对该草地土壤脲酶、蔗糖酶、过氧化氢酶均具有促进作用,N5、N10处理促进作用最明显。综合分析表明,氮沉降可直接或间接影响土壤微生物及酶活性,短期围封作为一种草地管理手段,对退化草地生态系统的修复具有一定作用,并可通过改善土壤理化性质、调节养分含量及其化学计量比来加速退化草地的恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号