首页 | 本学科首页   官方微博 | 高级检索  
   检索      

氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展
引用本文:程淑兰,方华军,徐梦,耿静,何舜,于光夏,曹子铖.氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展[J].生态学报,2018,38(23):8285-8295.
作者姓名:程淑兰  方华军  徐梦  耿静  何舜  于光夏  曹子铖
作者单位:中国科学院地理科学与资源研究所/生态系统观测与模拟重点实验室;东北林业大学生态研究中心...;苏州农业职业技术学院;黑...;福建农林大学资源与环境学...;中山大学大气科学学院;暨...;浙江农林大学;;中国科学院地理科学与资源...;中国科学院地理科学与资源...;黑龙江大学农业资源与环境...;福建师范大学地理科学学院...;中国科学院沈阳应用生态研...
基金项目:东北林业大学生态研究中心...;苏州农业职业技术学院;黑...;福建农林大学资源与环境学...;中山大学大气科学学院;暨...;浙江农林大学;;中国科学院地理科学与资源...;中国科学院地理科学与资源...;黑龙江大学农业资源与环境...;福建师范大学地理科学学院...;中国科学院沈阳应用生态研...
摘    要:大气氮沉降增加倾向于促进受氮限制陆地生态系统地上生物量,但是对地下碳过程和土壤碳截存的影响结果迥异,导致陆地生态系统“氮促碳汇”的评估存在很大的不确定性。大气氮沉降输入直接影响微生物活性或间接影响底物质量,改变凋落物和土壤有机质(SOM)的分解速率和分解程度,进而影响土壤有机碳(SOC)的积累与损耗过程。过去相关研究主要集中在土壤碳转化过程和碳储量动态方面,缺乏植物-微生物-SOM交互作用的理解,对土壤碳截存调控的生物化学和微生物学机理尚不清楚。本文以地下碳循环过程为主线,分别综述了氮沉降增加对植物地下碳分配、SOC激发效应、微生物群落碳代谢过程的影响,深入分析SOM化学稳定性与微生物群落动态的关系。该领域研究的薄弱环节体现在:(1)增氮倾向于降低根系的生长和周转,对根际沉积碳分配(数量和格局)的影响及驱动因素不明确;(2)虽然认识到氮素有效性影响土壤激发效应的方向和强度,但是氧化态NO-3和还原态NH+4输入对有机质激发效应的差异性影响及潜在机理知之甚少;(3)微生物碳利用效率(CUE)是微生物群落碳代谢的关键表征,能够很好地解释土壤碳的积累与损耗过程;由于缺乏适宜的测定方法,难以准确量化土壤微生物的CUE及微生物生物量的周转时间;(4)增氮会抑制土壤真菌群落及其胞外酶活性,对细菌群落组成的影响尚未定论,有关SOM化学质量与土壤微生物群落活性、组成之间的耦合关系尚不清楚。未来研究应基于长期的氮添加控制实验平台,结合碳氧稳定性同位素示踪、有机质化学、分子生物学和宏基因组学等方法,深入分析植物同化碳的地下分配规律、微生物碳代谢和周转、有机质化学结构与功能微生物群落的耦合关系等关键环节。上述研究将有助于揭示植物-土壤-微生物交互作用对SOC动态的调控机制,完善陆地生态系统碳-氮耦合循环模型,有效降低区域陆地碳汇评估的不确定性,并可为陆地生态系统应对全球变化提供科学依据。

关 键 词:大气氮沉降  地下碳分配  有机质稳定性  激发效应  碳素利用效率
收稿时间:2017/9/1 0:00:00
修稿时间:2018/6/11 0:00:00

Regulation of plant-soil-microbe interactions to soil organic carbon in natural ecosystems under elevated nitrogen deposition: A review
CHENG Shulan,FANG Huajun,XU Meng,GENG Jing,HE Shun,YU Guangxia and CAO Zicheng.Regulation of plant-soil-microbe interactions to soil organic carbon in natural ecosystems under elevated nitrogen deposition: A review[J].Acta Ecologica Sinica,2018,38(23):8285-8295.
Authors:CHENG Shulan  FANG Huajun  XU Meng  GENG Jing  HE Shun  YU Guangxia and CAO Zicheng
Institution:Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China,Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China,Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China and College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Increased atmospheric nitrogen (N) deposition generally promotes aboveground biomass in N-limiting terrestrial ecosystems, but the effects on underground carbon (C) processes and soil C sequestration remain controversial. This leads to considerable uncertainties in the evaluation of the C sequestration capacity caused by N deposition in terrestrial ecosystems. Atmospheric N deposition affects soil organic C (SOC) accumulation and depletion by directly changing microbial activity and/or indirectly changing substrate quality, and thereby changing the soil organic matter (SOM) decomposition. Previous research primarily focuses on soil C transformation processes and storage dynamics; however, limited information is available on the interaction among plants, microorganisms, and SOM, especially the biophysical and biochemical mechanisms involved in regulating plant-microorganism-SOM interactions with soil C sequestration. In this review, we summarize the effects of elevated N deposition on plant belowground C distribution, SOC priming effect, and microbial C metabolism, and analyzed the relationship between SOM chemical stability and microbial community dynamics. We identified a number of research topics which are in urgent needs of mechanistic investigation in the following decades:first, increased N input tends to reduce root growth and turnover, but the effects on C allocation in rhizosphere and associated mechanisms are unclear; second, although N availability can affect the direction and magnitude of the SOM priming effect, the contrasting effects of oxidized NO3- and reduced NH4+ and the potential mechanisms on SOM priming effect are far from certain; third, microbial C use efficiency (CUE) is a crucial characterization of C metabolism of microbial communities, the bottleneck process for soil carbon emission. It is challenging to accurately quantify the microbial CUE and microbial turnover time owing to a lack of appropriate measurement methods; fourth, increased N input inhibits the activities of soil fungal communities and their extracellular enzymes, but the effects on the activity and composition of the soil bacterial community are inconsistent; moreover, the association between SOM chemical quality and soil microbial activity and composition is elusive. Therefore, we call for a long-term N control experiment platform to fully investigate the above-mentioned topics in a systems perspective. The most advanced techniques, such as stable C and oxygen isotopic tracer, organic matter chemistry, molecular biology, and macro genomics, will be used to analyze the belowground allocation of the plant-assimilated C, microbial C metabolism and turnover, and coupling between the SOM chemical structure and microbial functional groups. This long-term experiment could help understand the mechanism of plant-soil-microbial interaction and its contribution to SOC dynamics, improve the soil carbon models, and reduce the uncertainty of regional C sink assessment, and further lay a cornerstone for scientific managing terrestrial ecosystem in a changing world.
Keywords:atmospheric nitrogen deposition  belowground C allocation  soil organic matter stability  priming effects  carbon use efficiency
本文献已被 CNKI 等数据库收录!
点击此处可从《生态学报》浏览原始摘要信息
点击此处可从《生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号