首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
丙酮酸脱氢酶复合体催化丙酮酸氧化脱羧,生成乙酰辅酶A.该复合体由丙酮酸脱羧酶(E1)、二氢硫辛酸乙酰转移酶(E2)和二氢硫辛酸脱氢酶(E3)三种酶组成.大肠杆菌E2的外周亚基结合结构域(peripheral subunit-binding domain,PSBD)结合E1和E3,对丙酮酸脱氢酶复合物的结构和功能有重要作用.本研究采用PCR技术扩增了E2的PSBD的48个氨基酸残基区域编码序列(c DNA),构建p ET-32a-pp-Psbd表达载体,测序正确后转入BL21(DE3)中表达,目的蛋白质用镍柱和Hi Trap SP柱纯化后达到电泳纯,质谱鉴定纯化后蛋白质分子量与理论值符合.pull-down结果表明,PSBD可分别与E1和E3结合.圆二色谱表征PSBD的二级结构主要为a-螺旋,当在0.5mol/L Na Cl的离子强度下,55.7%的PSBD分子折叠为正确的构象.动态光散射实验发现,PSBD分子有3种不同的构象存在形式,因此,PSBD非常容易从折叠态转化为不和E1、E3结合的无规卷曲态,这种构象的相互转化为其功能性与E1、E3结合及解离提供了结构基础.  相似文献   

2.
丙酮酸脱氢酶系(pyruvate dehydrogenase complex,PDH_C)主要由丙酮酸脱氢酶(E1)、二氢硫辛酸乙酰转移酶(E2)、二氢硫辛酸脱氢酶(E3)和E3结合蛋白(E3BP)组成,绝大多数的丙酮酸脱氢酶系缺失都是由丙酮酸脱氢酶E1α亚基突变或者磷酸化引起,仅有少数突变发生在E2、E3和E3BP上。本文就PDHC的结构与功能,PDHA1基因突变和E1α磷酸化与其功能的关系,及在相关疾病包括肿瘤的发生、发展和转移中的分子机制的研究进展做一总结,以期对因E1α功能丧失引起的疾病的诊断与治疗有所借鉴意义。  相似文献   

3.
2 氧 (代 )酸脱氢酶复合体 (OADHc)是众多多酶复合体中的一个典型代表 ,该复合体家族包括 3种多酶复合体———丙酮酸脱氢酶多酶复合体 (PDHc)、支链 2 氧 (代 )酸脱氢酶多酶复合体和 2 酮戊二酸脱氢酶多酶复合体。其中PDHc催化糖代谢中丙酮酸的不可逆地氧化脱羧产生乙酰CoA。1 .丙酮酸脱氢酶多酶复合体的组成PDHc广泛地分布于微生物、植物和哺乳动物中。在真核生物中 ,组成PDHc的所有蛋白质都是由核基因编码 ,且它们主要都位于线粒体上 (在一些生物的质体中也发现了它们的同工酶 )。PDHc的核心结构是由 3个…  相似文献   

4.
分子伴侣(molecular chaperone)能够帮助新生多肽链或错误折叠的蛋白质形成天然构象,但本身又不是成熟蛋白质的组成成分。蛋白质需要分子伴侣的帮助,才能够从核糖体合成的新生肽链折叠成有生物活性的大分子。E.coli的ObgE蛋白是保守的GTP酶,ObgE蛋白参与信号转导、蛋白运输和细胞周期调控,并与E.coli在氨基酸饥饿下的应激反应有关。本实验通过分子克隆,将E.coli ObgE蛋白的基因克隆到表达载体pET-28a中,转化到E.coli BL21进行蛋白表达纯化。纯化后的ObgE蛋白通过柠檬酸合成酶变复性实验、α-葡萄糖苷酶变复性实验、牛碳酸酐酶变复性实验,检测ObgE蛋白的分子伴侣活性,发现ObgE具有一定的分子伴侣活性,为该蛋白的研究应用奠定了基础。  相似文献   

5.
磷酸丙糖异构酶的折叠及稳定性研究   总被引:1,自引:0,他引:1  
从鸡胸肌中纯化出磷酸丙糖异构酶(triosephosphateisomerase,TIM),通过蛋白质内源荧光,圆二色性,紫外吸收二阶导数光谱等多种研究溶液构象的方法,对TIM被盐酸胍和热变性过程进行了详细的研究.结果表明,用不同测量方法得到TIM的变性过程均高度协同,没有观察到折叠中间态,应用单分子二态去折叠模型计算了TIM去折叠的热力学参数.通过圆二色光谱在222nm处的变化监测的TIM热变性过程也是高度协同的二态过程,天然态TIM的表观Tm为64.6℃.在低浓度盐酸胍存在下,TIM的热稳定性降低.讨论了二体蛋白质的可能去折叠机制,证明在使用的实验条件下磷酸丙糖异构酶去折叠过程中二级结构与三级结构的变化是同时发生的,其去折叠遵循观察不到二体解离的表观二态过程.  相似文献   

6.
理解蛋白质折叠速率是探明蛋白质结构和折叠机制物理基础的关键.蛋白质折叠速率的温度依赖关系是当前一个未解决的难题.假定蛋白质折叠是一个分子构象间的量子跃迁,导出了一个蛋白质折叠速率的解析公式.由此公式出发,计算了资料库中二态蛋白质的折叠速率和研究了它们的温度依赖性.从第一性原理出发,对实验给出的16个二态蛋白质折叠速率的非阿列尼乌斯(non-Arrhenius)温度关系给予成功解释,进而预测了这些蛋白质解折叠速率的温度依赖关系.依据量子折叠理论,给出了一个预测二态蛋白质折叠速率的统计公式,用于65个蛋白的资料库,理论和实验比较的相关系数为0.73.此外,理论还给出了与实验结果一致的最大和最小折叠速率估计.  相似文献   

7.
丙酮酸脱氢酶多酶复合体(PDC)催化丙酮酸生成乙酰辅酶 A(acetyl-CoA)的反应是线粒体代谢与生长的调控枢纽.丙酮酸脱氢酶激酶 (PDK)/丙酮酸脱氢酶磷酸酶(PDP)对丙酮酸脱氢酶(PDH)的磷酸化 /脱磷酸化作用以及丙酮酸/乙酰辅酶A对PDH底物产物水平的调控是线粒体适应不同生理环境的代谢调节方式,而调控 PDK基因转录的上游信号恰好也是线粒体生长或生物发生的调控机制.过氧化物酶体增殖物激活受体 (PPAR)/过氧化物酶体增殖物激活受体g共激活因子-1(PGC-1) 信号通路可能是线粒体代谢与生长在基因转录水平的共同调控通路.线粒体代谢与生长经共同通路调节可维持线粒体功能与结构之间的平衡.  相似文献   

8.
把蛋白质折叠看成多肽链上扭转态间的量子跃迁, 依据构象动力学的量子理论, 提出用接触残基间多肽链转动惯量和扭转势能来表征接触特性的动力学接触序, 从而能定量地从动力学角度研究蛋白质折叠速率. 在80个蛋白的数据集上实验, 证实了构象量子跃迁观点的合理性并得到以下结论: (1) 折叠速率与接触转动惯量之间存在显著相关性; (2) 多态蛋白的折叠可以看成在同样转动惯量、温度等条件下的二态蛋白折叠基础上的中间态延迟, 并估计了延迟时间的数量级; (3) 折叠可以分为释能和吸能两类, 蛋白质折叠速率上限由释能折叠决定, 并导出大多数折叠速率大的二态蛋白的量子跃迁过程为释能反应, 而折叠速率小的多态蛋白为吸能反应.  相似文献   

9.
双环结构Gro EL及其辅分子伴侣Gro ES是目前研究得最深入的分子伴侣.然而,Gro EL/Gro ES帮助蛋白质折叠的一些关键理化机制,尤其是水解ATP,Gro EL发生构象改变,能否主动调节蛋白质错误折叠中间体的构象,以促进错误折叠中间体的复性,仍然存在争议.结合本研究组近年的工作,作者着力介绍Gro EL促进蛋白质折叠的主动解折叠机制.  相似文献   

10.
分子伴侣的多重功能   总被引:24,自引:0,他引:24  
分子伴侣(molecular chaperone)在原核生物和真核生物的细胞中广泛存在.分子伴侣可稳定未折叠或部分折叠的多肽,并防止不适当的多肽链内或链间相互作用;有些分子伴侣也可与天然构象的蛋白质相互作用以促使寡聚态蛋白质发生结构重排.基于分子伴侣能识别并调节细胞内多肽的折叠,因此它们还具有介导线粒体蛋白跨膜转运,调控信息传导通路和转录、复制,以及参与微管形成与修复等功能.  相似文献   

11.
The pyruvate dehydrogenase (PDH) multienzyme complex is central to oxidative metabolism. We present the first crystal structure of a complex between pyruvate decarboxylase (E1) and the peripheral subunit binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2). The interface is dominated by a "charge zipper" of networked salt bridges. Remarkably, the PSBD uses essentially the same zipper to alternately recognize the dihydrolipoyl dehydrogenase (E3) component of the PDH assembly. The PSBD achieves this dual recognition largely through the addition of a network of interfacial water molecules unique to the E1-PSBD complex. These structural comparisons illuminate our observations that the formation of this water-rich E1-E2 interface is largely enthalpy driven, whereas that of the E3-PSBD complex (from which water is excluded) is entropy driven. Interfacial water molecules thus diversify surface complementarity and contribute to avidity, enthalpically. Additionally, the E1-PSBD structure provides insight into the organization and active site coupling within the approximately 9 MDa PDH complex.  相似文献   

12.
A (15)N-labelled peripheral-subunit binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2p) and the dimer of a solubilized interface domain (E3int) derived from the dihydrolipoyl dehydrogenase (E3) were used to investigate the basis of the interaction of E2p with E3 in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Thirteen of the 55 amino acids in the PSBD show significant changes in either or both of the (15)N and (1)H amide chemical shifts when the PSBD forms a 1 : 1 complex with E3int. All of the 13 amino acids reside near the N-terminus of helix I of PSBD or in the loop region between helix II and helix III. (15)N backbone dynamics experiments on PSBD indicate that the structured region extends from Val129 to Ala168, with limited structure present in residues Asn126 to Arg128. The presence of structure in the region before helix I was confirmed by a refinement of the NMR structure of uncomplexed PSBD. Comparison of the crystal structure of the PSBD bound to E3 with the solution structure of uncomplexed PSBD described here indicates that the PSBD undergoes almost no conformational change upon binding to E3. These studies exemplify and validate the novel use of a solubilized, truncated protein domain in overcoming the limitations of high molecular mass on NMR spectroscopy.  相似文献   

13.
The enzymes pyruvate decarboxylase (E1) and dihydrolipoyl dehydrogenase (E3) bind tightly but in a mutually exclusive manner to the peripheral subunit-binding domain (PSBD) of dihydrolipoyl acetyltransferase in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. The use of directed mutagenesis, surface plasmon resonance detection and isothermal titration microcalorimetry revealed that several positively charged residues of the PSBD, most notably Arg135, play an important part in the interaction with both E1 and E3, whereas Met131 makes a significant contribution to the binding of E1 only. This indicates that the binding sites for E1 and E3 on the PSBD are overlapping but probably significantly different, and that additional hydrophobic interactions may be involved in binding E1 compared with E3. Arg135 of the PSBD was also replaced with cysteine (R135C), which was then modified chemically by alkylation with increasingly large aliphatic groups (R135C -methyl, -ethyl, -propyl and -butyl). The pattern of changes in the values of DeltaG degrees, DeltaH degrees and TDeltaS degrees that were found to accompany the interaction with the variant PSBDs differed between E1 and E3 despite the similarities in the free energies of their binding to the wild-type. The importance of a positive charge on the side-chain at position 135 for the interaction of the PSBD with E3 and E1 was apparent, although lysine was found to be an imperfect substitute for arginine. The results offer further evidence of entropy-enthalpy compensation ('thermodynamic homeostasis') - a feature of systems involving a multiplicity of weak interactions.  相似文献   

14.
An immunochemical enzyme immunoassay model system was developed and compared for maximum sensitivity with a radioimmunoassay method and the classic enzyme activity method for the detection of pyruvate dehydrogenase complex (PDHc) and its decarboxylating subunit, pyruvate dehydrogenase (E1), isolated from Escherichia coli. Cross-linked large molecular weight antibody-enzyme conjugate systems are compared with heterobifunctional singular antibody conjugates substituted with high levels of horseradish peroxidase. Both polyclonal and monoclonal antibodies generated to the Escherichia coli PDHc and E1 antigens were used to develop a double-antibody sandwich microtiter plate enzyme-linked immunosorbent assay. It is demonstrated that a double sandwich immunochemical assay system can be quantitative for PDHc, can detect PDHc in crude cell lysates and has levels of sensitivity of 2.0.10(-16) mol for the detection of PDHc. This assay model system provides specific antibody selection criteria and coupling methods needed to select specific antisera that cross-react with human PDHc. This rapid and sensitive immunochemical assay method clearly demonstrates that sensitive mass assay systems can be developed for the detection of PDHc. Different from Western blot, this methodology could be used to generate mass assays which could be applied to the rapid detection of mammalian antigens (employing the corresponding antibodies) implicated in a number of pyruvate dehydrogenase deficiencies associated with human disorders.  相似文献   

15.
The Escherichia coli pyruvate dehydrogenase complex (PDHc) catalyzing conversion of pyruvate to acetyl-CoA comprises three components: E1p, E2p, and E3. The E2p is the five-domain core component, consisting of three tandem lipoyl domains (LDs), a peripheral subunit binding domain (PSBD), and a catalytic domain (E2pCD). Herein are reported the following. 1) The x-ray structure of E2pCD revealed both intra- and intertrimer interactions, similar to those reported for other E2pCDs. 2) Reconstitution of recombinant LD and E2pCD with E1p and E3p into PDHc could maintain at least 6.4% activity (NADH production), confirming the functional competence of the E2pCD and active center coupling among E1p, LD, E2pCD, and E3 even in the absence of PSBD and of a covalent link between domains within E2p. 3) Direct acetyl transfer between LD and coenzyme A catalyzed by E2pCD was observed with a rate constant of 199 s−1, comparable with the rate of NADH production in the PDHc reaction. Hence, neither reductive acetylation of E2p nor acetyl transfer within E2p is rate-limiting. 4) An unprecedented finding is that although no interaction could be detected between E1p and E2pCD by itself, a domain-induced interaction was identified on E1p active centers upon assembly with E2p and C-terminally truncated E2p proteins by hydrogen/deuterium exchange mass spectrometry. The inclusion of each additional domain of E2p strengthened the interaction with E1p, and the interaction was strongest with intact E2p. E2p domain-induced changes at the E1p active site were also manifested by the appearance of a circular dichroism band characteristic of the canonical 4′-aminopyrimidine tautomer of bound thiamin diphosphate (AP).  相似文献   

16.
The peripheral subunit-binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2, EC 2.3.1.12) binds tightly but mutually exclusively to dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4) and pyruvate decarboxylase (E1, EC 1.2.4.1) in the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Isothermal titration calorimetry (ITC) experiments demonstrated that the enthalpies of binding (DeltaH degrees ) of both E3 and E1 with the PSBD varied with salt concentration, temperature, pH, and buffer composition. There is little significant difference in the free energies of binding (DeltaG degrees = -12.6 kcal/mol for E3 and = -12.9 kcal/mol for E1 at pH 7.4 and 25 degrees C). However, the association with E3 was characterized by a small, unfavorable enthalpy change (DeltaH degrees = +2.2 kcal/mol) and a large, positive entropy change (TDeltaS degrees = +14.8 kcal/mol), whereas that with E1 was accompanied by a favorable enthalpy change (DeltaH degrees = -8.4 kcal/mol) and a less positive entropy change (TDeltaS degrees = +4.5 kcal/mol). Values of DeltaC(p) of -316 cal/molK and -470 cal/molK were obtained for the binding of E3 and E1, respectively. The value for E3 was not compatible with the DeltaC(p) calculated from the nonpolar surface area buried in the crystal structure of the E3-PSBD complex. In this instance, a large negative DeltaC(p) is not indicative of a classical hydrophobic interaction. In differential scanning calorimetry experiments, the midpoint melting temperature (T(m)) of E3 increased from 91 degrees C to 97.1 degrees C when it was bound to PSBD, and that of E1 increased from 65.2 degrees C to 70.0 degrees C. These high T(m) values eliminate unfolding as a major source of the anomalous DeltaC(p) effects at the temperatures (10-37 degrees C) used for the ITC experiments.  相似文献   

17.
Jung HI  Cooper A  Perham RN 《Biochemistry》2002,41(33):10446-10453
Structural studies have shown that electrostatic interactions play a major part in the binding of dihydrolipoyl dehydrogenase (E3) to the peripheral subunit-binding domain (PSBD) of the dihydrolipoyl acyltransferase (E2) in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. The binding is characterized by a small, unfavorable enthalpy change (deltaH degrees = +2.2 kcal/mol) and a large, positive entropy change (TdeltaS degrees = +14.8 kcal/mol). The contributions of individual surface residues of the PSBD of E2 to its interaction with E3 have been assessed by alanine-scanning mutagenesis, surface plasmon resonance detection, and isothermal titration calorimetry. The mutation R135A in the PSBD gave rise to a significant decrease (120-fold) in the binding affinity; two other mutations (R139A and R156A) were associated with smaller effects. The binding of the R135A mutant to E3 was accompanied by a favorable enthalpy (deltaH degrees = -2.6 kcal/mol) and a less positive entropy change (TdeltaS degrees = +7.2 kcal/mol). The midpoint melting temperature (T(m)) of E3-PSBD complexes was determined by differential scanning calorimetry. The R135A mutation caused a significant decrease (5 degrees C) in the T(m), compared with the wild-type complex. The results reveal the importance of Arg135 of the PSBD as a key residue in the molecular recognition of E3 by E2, and as a major participant in the overall entropy-driven binding process. Further, the effects of mutagenesis on the deltaCp of subunit association illustrate the difficulties in attributing changes in heat capacity to specific classes of interactions.  相似文献   

18.
He J  Feng L  Li J  Tao R  Wang F  Liao X  Sun Q  Long Q  Ren Y  Wan J  He H 《Bioorganic & medicinal chemistry》2012,20(5):1665-1670
As potential inhibitors of Escherichia coli pyruvate dehydrogenase complex E1 (PDHc E1), a series of novel 2-methylpyrimidine-4-ylamine derivatives were designed based on the structure of the active site of PDHc E1 and synthesized using 'click chemistry'. Their inhibitory activity in vitro against PDHc E1 and fungicidal activity were examined. Some of these compounds such as 3g, 3l, 3n, 3o, and 5b demonstrated to be effective inhibitors of PDHc E1 from E. coli and exhibited antifungal activity. SAR analysis indicated that both, the inhibitory potency against E. coli PDHc E1 and the antifungal activity of title compounds, could be increased greatly by optimizing substituent groups in the compounds. The structures of substituent group in 5-position on the 1,2,3-triazole and 4-position on the benzene ring in title compounds were found to play a pivotal role in both above-mentioned biological activities. Amongst all the compounds, compound 5b with iodine in the 5-position of 1,2,3-triazole and with nitryl group in the 4-position of benzene ring acted as the best inhibitor against PDHc E1 from E. coli. It was also found to be the most effective compound with higher antifungal activity against Rhizoctonia solani and Botrytis cinerea at the dosage of 100 μg mL(-1). Therefore, in this study, compound 5b was used as a lead compound for further optimization.  相似文献   

19.
Escherichia coli MC4100 was grown in anaerobic glucose-limited chemostat cultures, either in the presence of an electron acceptor (fumarate, nitrate, or oxygen) or fully fermentatively. The steady-state NADH/NAD ratio depended on the nature of the electron acceptor. Anaerobically, the ratio was highest, and it decreased progressively with increasing midpoint potential of the electron acceptor. Similarly, decreasing the dissolved oxygen tension resulted in an increased NADH/NAD ratio. As pyruvate catabolism is a major switch point between fermentative and respiratory behavior, the fluxes through the different pyruvate-consuming enzymes were calculated. Although pyruvate formate lyase (PFL) is inactivated by oxygen, it was inferred that the in vivo activity of the enzyme occurred at low dissolved oxygen tensions (DOT 相似文献   

20.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号