首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
分子伴侣及其在蛋白质折叠中的作用研究进展   总被引:1,自引:0,他引:1  
蛋白质折叠是一个复杂的、动态的过程,蛋白质的折叠不是自发的,需要其他物质的帮助.了解分子伴侣在蛋白质折叠过程中的的作用,有助于进一步研究蛋白质折叠机制.本文介绍了分子伴侣及其分类,重点综述了各类分子伴侣在蛋白质折叠中的机制,并提出了研究分子伴侣在蛋白质折叠中的作用的重要意义.  相似文献   

2.
二硫键异构酶   总被引:2,自引:1,他引:1  
天然二硫键的形成是许多蛋白正确折叠中的限速步骤,在稳定蛋白质构象和保持蛋白质活性方面起重要作用。讨论的二硫键异构酶是内质网中一种重要的蛋白折叠催化剂,它催化蛋白二硫键的形成和错误配对二硫键的重排,并有抑制错误折叠蛋白聚集的分子伴侣活性。PDI广泛应用于基因工程上提高外源蛋白表达水平。  相似文献   

3.
蛋白质的氧化重折叠   总被引:7,自引:0,他引:7  
经过近几十年来广泛而深入的研究,蛋白质氧化重折叠的机制已得到相当详细的阐明。1在已研究过的蛋白质中,大多数蛋白质都是沿着多途径而非单一、特定的途径进行氧化重折叠,这与折叠能量景观学说是一致的。2正是氨基酸残基间的天然相互作用而不是非天然的相互作用控制蛋白质的折叠过程。这一结论与含非天然二硫键的折叠中间体在牛胰蛋白酶抑制剂(BPTI)折叠中所起的重要作用并非相互排斥,因为后者仅仅是进行链内二硫键重排的化学反应所必需,与控制肽链折叠无直接关系。3根据对BPTI的研究,二硫键曾被认为仅仅具有稳定蛋白质天然结构的作用,既不决定折叠途径也不决定其三维构象。这一观点不适用于其它蛋白质。对凝乳酶原的研究表明,天然二硫键的形成是恢复天然构象的前提。天然二硫键的形成与肽键的正确折叠相辅相成,更具有普遍意义。4在氧化重折叠的早期,二硫键的形成基本上是一个随机过程,随着肽链的折叠二硫键的形成越来越受折叠中间体构象的限制。提高重组蛋白质的复性产率是生物技术领域中的一个巨大的挑战。除了分子聚集外,在折叠过程中所形成的二硫键错配分子是导致低复性率的另一个主要原因。氧化重折叠机制的阐明为解决此问题提供了有益的启示。如上所述,在折叠的后期,二硫键的形成决定于折叠中间体的构象,类天然、有柔性的结构有利于天然二硫键形成和正确折叠,具有这类结构的分子为有效的折叠中间体,最终都能转变为天然产物;而无效折叠中间体往往具有稳定的结构,使巯基、二硫键内埋妨碍二硫键重排,并因能垒的障碍不利于进一步折叠。因此,降低无效折叠中间体的稳定性使之转变为有效折叠中间体是提高含二硫键蛋白质复性率的一条基本原则,实验证明,碱性pH、低温、降低蛋白质稳定性的试剂、蛋白质二硫键异构酶、改变蛋白质一级结构是实现这一原则的有效手段。此外,这里还就氧化重折叠的基础和应用研究的前景进行了讨论。  相似文献   

4.
分子伴侣是一类能够识别非天然蛋白并能协助其正确折叠、组装和转运的功能蛋白。最新研究发现,在原核或真核细胞中,不同结构、不同种类的分子伴侣形成了一个复杂的折叠系统,通过这个系统,蛋白质完成了从初步合成到形成具有生物活性的三维构象的过程,避免了折叠过程中多肽链的错误折叠、蛋白沉淀和有害物质的产生。文章综述了蛋白质折叠过程中不同种类分子伴侣组件的结构、功能和作用机制的研究进展,这些分子伴侣包括Hsp70、核糖体结合因子、伴侣素、前折叠素与Hsp90,并阐述了它们在蛋白质内稳态中的作用。  相似文献   

5.
分子内分子伴侣--Pro肽在蛋白质折叠中的作用   总被引:7,自引:0,他引:7  
在体内,许多蛋白质,如很多胞外蛋白酶、某些多肽激素等都以含前导肽的前体形式合成,前导肽在蛋白质折叠中具有分子伴侣的功能。为了与一般意义上的分子伴侣相区别,人们将对蛋白质折叠有帮助的前导肽称为分子内分子伴侣,分子内分子伴侣帮助蛋白质在折叠过程中克服高的能量障碍,某些蛋白质的分子内分子伴侣甚至促进其在氧化性折叠中二硫键的正确配对。  相似文献   

6.
分子伴侣     
李强 《生物学通报》1995,30(3):16-17
分子伴侣是最近十几年才发现的一类非常保守的蛋白家庭。它与酶的作用方式类似,能和某些不同的多肽链非特异性结合,催化介导蛋白质特定构象的形成,参与体内蛋白质的折叠、装配和转运,但又不构成其结构的一部分。这类保守的蛋白家族大致可分为四类,广泛存在于生物体中。其中研究得最多的是热休克蛋白。实际上,分子伴侣是一种蛋白质分子构象的协助者,主要参与蛋白质次级结构的形成。  相似文献   

7.
种类繁多的蛋白质所发挥的各种功能对于生命现象是至关重要的,然而蛋白质的结构却总是受到体内外各种因素的干扰甚至破坏。因此,生物体为了维持蛋白质的活性构象,蛋白质质量控制(protein quality control)机制是必不可少的,而这种机制一旦失效将导致各种与蛋白质折叠相关的严重疾病,例如帕金森病(Parkinson’s disease)和阿尔茨海默病(Alzheimer’s disefse)等。分子伴侣和蛋白酶是参与蛋白质质量控制的主要两类蛋白质分子,它们能够结合错误折叠的底物蛋白并辅助其重新折叠或将其降解。DegP蛋白(又称为HtrA)是存在于大肠杆菌的膜间质中的一种热休克蛋白,对于大肠杆菌在高温下的存活是必需的。它的独特之处在于它同时具有分子伴侣和蛋白酶两种活性,因此DegP是研究蛋白质质量控制机制的一种典型样品。DegP同源蛋白(统称为HtrA蛋白家族)几乎存在于所有的生物种类中,它们的功能可能是参与细胞的胁迫反应。  相似文献   

8.
蛋白质构象病提示的疾病防治新思路   总被引:3,自引:0,他引:3  
蛋白质构象病是由于组织中特定的蛋白质承受了构象变化,进而聚集并产生沉积所引起的一种疾病。构象病概念的提出提示人们可以通过抑制或者逆转组织蛋白的变构来防治疾病,本文就蛋白质构象病的概念以及近年关注较多的β折叠形成阻断肽和分子伴侣两种防治思路予以综述。  相似文献   

9.
蛋白质异常修饰导致错误折叠的机制目前尚不清楚.提出如下设想:细胞内的蛋白质分子可能发生多种异常修饰,引起蛋白质选择性错误折叠和聚积而导致神经退行性疾病.  相似文献   

10.
蛋白质折叠与装配成天然状态的机制,过去根据离体复性实验观察认为是自组装,而近几年来的研究表明体内蛋白质的折叠 与装配并非如此,而是常常依赖于其它辅助因子和ATP水解供能,为辅助性组装。这些辅助因子基本可概括为分子内伴侣、酶类和分子伴侣三大类。  相似文献   

11.
The modulation of the folding mechanism of the small protein single-chain monellin (MNEI) by the Escherichia coli chaperone GroEL has been studied. In the absence of the chaperone, the folding of monellin occurs via three parallel routes. When folding is initiated in the presence of a saturating concentration of GroEL, only 50-60% of monellin molecules fold completely. The remaining 40-50% of the monellin molecules remain bound to the GroEL and are released only upon addition of ATP. It is shown that the basic folding mechanism of monellin is not altered by the presence of GroEL, but that it occurs via only one of the three available routes when folding is initiated in the presence of saturating concentrations of GroEL. Two pathways become nonoperational because GroEL binds very tightly to early intermediates that populate these pathways in a manner that makes the GroEL-bound intermediates incompetent to fold. This accounts for the monellin molecules that remain GroEL-bound at the end of the folding reaction. The third pathway remains operational because the GroEL-bound early intermediate on this pathway is folding-competent, suggesting that this early intermediate binds to GroEL in a manner that is different from that of the binding of the early intermediates on the other two pathways. It appears, therefore, that the same protein can bind GroEL in more than one way. The modulation of the folding energy landscape of monellin by GroEL occurs because GroEL binds folding intermediates on parallel folding pathways, in different ways, and with different affinities. Moreover, when GroEL is added to refolding monellin at different times after commencement of refolding, the unfolding of two late kinetic intermediates on two of the three folding pathways can be observed. It appears that the unfolding of late folding intermediates is enabled by a thermodynamic coupling mechanism, wherein GroEL binds more tightly to an early intermediate than to a late intermediate on a folding pathway, with preferential binding energy being larger than the stability of the late intermediate. Hence, it is shown that GroEL can inadvertently and passively cause, through its ability to bind different folding intermediates differentially, the unfolding of late productive intermediates on folding pathways, and that its unfolding action is not restricted solely to misfolded or kinetically trapped intermediates.  相似文献   

12.
The cylindrical chaperonin GroEL and its lid-shaped cofactor GroES of Escherichia coli have an essential role in assisting protein folding by transiently encapsulating non-native substrate in an ATP-regulated mechanism. It remains controversial whether the chaperonin system functions solely as an infinite dilution chamber, preventing off-pathway aggregation, or actively enhances folding kinetics by modulating the folding energy landscape. Here we developed single-molecule approaches to distinguish between passive and active chaperonin mechanisms. Using low protein concentrations (100 pM) to exclude aggregation, we measured the spontaneous and GroEL/ES-assisted folding of double-mutant maltose binding protein (DM-MBP) by single-pair fluorescence resonance energy transfer and fluorescence correlation spectroscopy. We find that GroEL/ES accelerates folding of DM-MBP up to 8-fold over the spontaneous folding rate. Accelerated folding is achieved by encapsulation of folding intermediate in the GroEL/ES cage, independent of repetitive cycles of protein binding and release from GroEL. Moreover, photoinduced electron transfer experiments provided direct physical evidence that the confining environment of the chaperonin restricts polypeptide chain dynamics. This effect is mediated by the net-negatively charged wall of the GroEL/ES cavity, as shown using the GroEL mutant EL(KKK2) in which the net-negative charge is removed. EL(KKK2)/ES functions as a passive cage in which folding occurs at the slow spontaneous rate. Taken together our findings suggest that protein encapsulation can accelerate folding by entropically destabilizing folding intermediates, in strong support of an active chaperonin mechanism in the folding of some proteins. Accelerated folding is biologically significant as it adjusts folding rates relative to the speed of protein synthesis.  相似文献   

13.
GroEL recognizes proteins that are folding improperly or that have aggregation-prone intermediates. Here we have used as substrates for GroEL, wildtype (WT) coat protein of phage P22 and 3 coat proteins that carry single amino acid substitutions leading to a temperature-sensitive folding (tsf) phenotype. In vivo, WT coat protein does not require GroEL for proper folding, whereas GroEL is necessary for the folding of the tsf coat proteins; thus, the single amino acid substitutions cause coat protein to become a substrate for GroEL. The conformation of WT and tsf coat proteins when in a binary complex with GroEL was investigated using tryptophan fluorescence, quenching of fluorescence, and accessibility of the coat proteins to proteolysis. WT coat protein and the tsf coat protein mutants were each found to be in a different conformation when bound to GroEL. As an additional measure of the changes in the bound conformation, the affinity of binding of WT and tsf coat proteins to GroEL was determined using a fluorescence binding assay. The tsf coat proteins were bound more tightly by GroEL than WT coat protein. Therefore, even though the proteins are identical except for a single amino acid substitution, GroEL did not bind these substrate polypeptides in the same conformation within its central cavity. Therefore, GroEL is likely to bind coat protein in a conformation consistent with a late folding intermediate, with substantial secondary and tertiary structure formed.  相似文献   

14.
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.  相似文献   

15.
The main function of the chaperone GroEL is to prevent nonspecific association of nonnative protein chains and provide their correct folding. In the present work, the renaturation kinetics of three globular proteins (human alpha-lactalbumin, bovine carbonic anhydrase, and yeast phosphoglycerate kinase) in the presence of different molar excess of GroEL (up to 10-fold) was studied. It was shown that the formation of the native structure during the refolding of these proteins is retarded with an increase in GroEL molar excess due to the interaction of kinetic protein intermediates with the chaperone. Mg(2+)-ATP and Mg(2+)-ADP weaken this interaction and decrease the retarding effect of GroEL on the protein refolding kinetics. The theoretical modeling of protein folding in the presence of GroEL showed that the experimentally observed linear increase in the protein refolding half-time with increasing molar excess of GroEL must occur only when the protein adopts its native structure outside of GroEL (i.e. in the free state), while the refolding of the protein in the complex with GroEL is inhibited. The dissociation constants of GroEL complexed with the kinetic intermediates of the proteins studied were evaluated, and a simple mechanism of the functioning of GroEL as a molecular chaperone was proposed.  相似文献   

16.
The chaperonin GroEL and the peptidyl-prolyl cis-trans isomerase cyclophilin are major representatives of two distinct cellular systems that help proteins to adopt their native three-dimensional structure: molecular chaperones and folding catalysts. Little is known about whether and how these proteins cooperate in protein folding. In this study, we have examined the action of GroEL and cyclophilin on a substrate protein in two distinct prolyl isomerization states. Our results indicate that: (i) GroEL binds the same substrate in different prolyl isomerization states. (ii) GroEL-ES does not promote prolyl isomerizations, but even retards isomerizations. (iii) Cyclophilin cannot promote the correct isomerization of prolyl bonds of a GroEL-bound substrate, but acts sequentially after release of the substrate from GroEL. (iv) A denatured substrate with all-native prolyl bonds is delayed in folding by cyclophilin due to isomerization to non-native prolyl bonds; a substrate that has proceeded in folding beyond a stage where it can be bound by GroEL is still sensitive to cyclophilin. (v) If a denatured cyclophilin-sensitive substrate is first bound to GroEL, however, productive folding to a cyclophilin-resistant form can be promoted, even without GroES. We conclude that GroEL and cyclophilin act sequentially and exert complementary functions in protein folding.  相似文献   

17.
Despite extensive structural and kinetic studies, the mechanism by which the Escherichia coli chaperonin GroEL assists protein folding has remained somewhat elusive. It appears that GroEL might play an active role in facilitating folding, in addition to its role in restricting protein aggregation by secluding folding intermediates. We have investigated the kinetic mechanism of GroEL-mediated refolding of the small protein barstar. GroEL accelerates the observed fast (millisecond) refolding rate, but it does not affect the slow refolding kinetics. A thermodynamic coupling mechanism, in which the concentration of exchange-competent states is increased by the law of mass action, can explain the enhancement of the fast refolding rates. It is not necessary to invoke a catalytic role for GroEL, whereby either the intrinsic refolding rate of a productive folding transition or the unfolding rate of a kinetically trapped off-pathway intermediate is increased by the chaperonin.  相似文献   

18.
Escherichia coli chaperonins GroEL and GroES are indispensable for survival and growth of the cell since they provide essential assistance to the folding of many newly translated proteins in the cell. Recent studies indicate that a substantial portion of the proteins involved in the host pathways are completely dependent on GroEL–GroES for their folding and hence providing some explanation for why GroEL is essential for cell growth. Many proteins either small-single domain or large multidomains require assistance from GroEL–ES during their lifetime. Proteins of size up to 70 kDa can fold via the cis mechanism during GroEL–ES assisted pathway, but other proteins (>70 kDa) that cannot be pushed inside the cavity of GroEL–ATP complex upon binding of GroES fold by an evolved mechanism called trans. In recent years, much work has been done on revealing facts about the cis mechanism involving the GroEL assisted folding of small proteins whereas the trans mechanism with larger polypeptide substrates still remains under cover. In order to disentangle the role of chaperonin GroEL–GroES in the folding of large E. coli proteins, this review discusses a number of issues like the range of large polypeptide substrates acted on by GroEL. Do all these substrates need the complete chaperonin system along with ATP for their folding? Does GroEL act as foldase or holdase during the process? We conclude with a discussion of the various queries that need to be resolved in the future for an extensive understanding of the mechanism of GroEL mediated folding of large substrate proteins in E. coli cytosol.  相似文献   

19.
The folding of many proteins depends on the assistance of chaperonins like GroEL and GroES and involves the enclosure of substrate proteins inside an internal cavity that is formed when GroES binds to GroEL in the presence of ATP. Precisely how assembly of the GroEL-GroES complex leads to substrate protein encapsulation and folding remains poorly understood. Here we use a chemically modified mutant of GroEL (EL43Py) to uncouple substrate protein encapsulation from release and folding. Although EL43Py correctly initiates a substrate protein encapsulation reaction, this mutant stalls in an intermediate allosteric state of the GroEL ring, which is essential for both GroES binding and the forced unfolding of the substrate protein. This intermediate conformation of the GroEL ring possesses simultaneously high affinity for both GroES and non-native substrate protein, thus preventing escape of the substrate protein while GroES binding and substrate protein compaction takes place. Strikingly, assembly of the folding-active GroEL-GroES complex appears to involve a strategic delay in ATP hydrolysis that is coupled to disassembly of the old, ADP-bound GroEL-GroES complex on the opposite ring.  相似文献   

20.
Coupling with ATP hydrolysis and cooperating with GroES, the double ring chaperonin GroEL assists the folding of other proteins. Here we report novel GroEL-GroES complexes formed in fluoroberyllate (BeF(x)) that can mimic the phosphate part of the enzyme-bound nucleotides. In ATP, BeF(x) stops the functional turnover of GroEL by preventing GroES release and produces a symmetric 1:2 GroEL-GroES complex in which both GroEL rings contain ADP.BeF(x) and an encapsulated substrate protein. In ADP, the substrate protein-loaded GroEL cannot bind GroES. In ADP plus BeF(x), however, it can bind GroES to form a stable 1:1 GroEL-GroES complex in which one of GroEL rings contains ADP.BeF(x) and an encapsulated substrate protein. This 1:1 GroEL-GroES complex is converted into the symmetric 1:2 GroEL-GroES complex when GroES is supplied in ATP plus BeF(x). Thus, BeF(x) stabilizes two GroEL-GroES complexes; one with a single folding chamber and the other with double folding chambers. These results shed light on the intermediate ADP.P(i) nucleotide states in the functional cycle of GroEL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号