首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 86 毫秒
1.
固定化过氧化物酶丝素膜的制备及其性质   总被引:3,自引:1,他引:2  
家蚕丝素经高浓度的中性盐氯化钙溶解后,制成了固定化过氧化物酶丝素膜,对这种酶膜的活性和理化特性作了分析,结果表明这种酶膜的活性高,酶促反应温度范围宽,最适pH5.0-7.0,热稳定性也较游离酶好,这与用溴化锂溶解丝素后制成的固定化过氧化物酶膜相仿.因此,用这种方法制成的丝素膜同样是一种良好的固定化酶的生物材料.  相似文献   

2.
采用酪氨酸酶对丝素蛋白催化氧化,考察了酶促氧化反应对丝素蛋白结构及丝素膜性能的影响。研究结果表明,酪氨酸酶可催化氧化丝素蛋白中酪氨酸残基生成多巴和多巴醌结构衍生物,并且两者含量随催化反应时间延长呈波动性变化;酶促反应后丝素蛋白中游离氨基含量下降,丝素风干膜断裂强度增加,表明酶促氧化中丝素大分子间发生自交联。XRD结果表明酪氨酸酶催化氧化对丝素蛋白二级结构有一定影响;SEM显示酶促改性可能影响丝素蛋白冷冻干燥膜多孔形态结构。  相似文献   

3.
用桑蚕丝素蛋白制备邻苯二酚酶传感器   总被引:4,自引:0,他引:4  
从蘑菇组织中提取邻苯二酚粗酶 ,利用丝素蛋白在甲醇作用下 ,其分子结构由可溶性randomcoil向不容性 β -sheet发生转变 ,从而将邻苯二酚粗酶固定在丝素蛋白膜中 ,制得邻苯一酚酶传感器。该传感器在pH6 0的KH2 PO4 -Na2 HPO4 工作介质中具有良好的响应特性 ,工作线性范围为 1 0× 10 - 5- 2 5× 10 - 4mol L ,检测限 5 0× 10 - 6 mol L ,响应时间 2min。酶经丝素蛋白的固定后具有较强的耐热性能 ,并能比较长时间保持酶的活性。该传感器在KH2 PO4 -Na2 HPO4 缓冲溶液的保存下 ,其使用寿命可达 2个月以上  相似文献   

4.
糖化酶在丝素膜上的固定化及性质研究   总被引:2,自引:0,他引:2  
戴玉锦 《生物技术》2002,12(5):27-28
利用丝素作糖化酶的固定化载体,应用包埋法和共价交联法两种方法,制备了固定化糖化酶丝素膜,研究结果表明,共价交联法制备的酶膜活力较高,且回收率可达50%以上;与溶液酶相比,固定化酶的最适温度提高了10℃,热稳定性与贮存稳定性也有了很大提高。  相似文献   

5.
目的探讨碱性成纤维细胞生长因子(bFGF)及角蛋白对丝素蛋白膜改性后的生物相容性改变。方法还原法制备水溶性人发角蛋白,用共混法使人发角蛋白与丝素蛋白形成共混膜;化学交联法用bFGF对丝素膜进行表面修饰形成交联膜。通过MTT法及荧光显微镜观察检测3T3细胞在三种丝素基材料上的增殖情况。通过接触角测定,对上述三种材料亲水性进行表征。不同的丝素基材料对细胞增殖的促进情况以及接触角的测定2组间SUV_(max)比较采用两样本t检验。结果制备的人发角蛋白分子量范围在44-66KDa之间,条带清晰。MTT法及显微镜观察表明,含角蛋白40﹪共混膜对细胞生长的促进作用最为明显(0.718±0.03,P0.05),交联膜次之(0.545±0.022,P0.05),最后是丝素膜(0.463±0.027,P0.01)。接触角测定结果表明,共混膜的接触角(17.5±1.6,P0.01)最小,交联膜(47±1.8,P0.01)次之,丝素膜的接触角(61±1.5,P0.05)最大,即共混膜黏附性最好。结论制备的40﹪共混膜具有最强生物相容性,b FGF修饰的丝素蛋白交联膜次之,最后是丝素膜。  相似文献   

6.
丝素蛋白膜固定β-葡萄糖苷酶及其改良食品风味的研究   总被引:13,自引:0,他引:13  
从黑曲霉发酵液中提取β-葡萄糖苷酶酶液,用丝素蛋白将其固定,探讨酶固定化的影响因素及固定化酶的性质。β-葡萄糖苷酶的固定化条件为:取0.8 Uβ-葡萄糖苷酶与4.0%戊二醛和10%牛血清白蛋白混合(体积比为5:3:2),涂布于1cm2丝素蛋白膜上交联作用8h。在此条件下获得的固定化酶性质为:最适温度为60℃,比游离酶提高10℃;最适pH为5.0;t1/2为75℃,热稳定性比游离酶有明显改善;最佳反应时间为15 min;与游离酶相比,与底物亲和力降低。将固定化酶膜应用于果汁、果酒、茶汁等食品的增香,经感官鉴评,样品间存在显著差异,进一步经色谱一质谱联用仪分析,发现酶解后的样品,原有香气物质有不同程度的增加,4-萜品醇增加了107%、紫苏醇增加了42%,还有三种未知的香气组分分别增加了251%、79%和33%;并有新风味物质——芳樟醇、香叶醇和2-羟基-5-甲基苯乙酮产生,显示了较好增香效果。  相似文献   

7.
本文提出用固定化酶-化学发光分析法测定葡萄糖并在此基础上构建了一种新型葡萄糖传感器。这种传感器系由固定化酶膜,光敏二极管及醋酸纤维滤膜构成。与其他类型的葡萄糖传惑器相比,它具有灵敏度高、响应速度快、工作稳定等特点,其线性工作范围可达4个数量级,检测下限为O.5ppm,可连续测定200个样品,测定结果与邻甲苯胺法所得结果相一致。  相似文献   

8.
乳酸(C3H6O3),又名2-羟基丙酸、丙醇酸,属于羟基酸的一种。乳酸在食品工业、临床医学、生物技术等行业具有极其重要的意义,因此如何高通量检测不同样品中的乳酸成为目前业界研究的重点。传统乳酸检测方法操作繁琐、费时费力或需要昂贵的检测设备,乳酸生物传感器可以克服这些限制,不需要样品制备,能够快速、简便、可靠地定量测定食品或血浆中的乳酸,具有广阔的应用前景。乳酸酶电极生物传感器主要有两种类型——基于L-乳酸氧化酶(L-LOD)和L-乳酸脱氢酶(L-LDH)的乳酸生物传感器。本文综述了L-LOD和L-LDH结构特征、来源及催化机理,讨论了改善基于酶电极的乳酸传感器性能的3种策略(电极材料改造策略、酶固定化策略、酶分子工程改造策略),还根据用于制造乳酸生物传感器的不同载体包括膜、透明凝胶基质、水凝胶载体、纳米颗粒等对乳酸生物传感器进行了归类分析,最后本文将目前商品化应用的酶电极乳酸生物传感器特点进行了对比总结讨论,阐述了乳酸生物传感器的未来应用方向,并对未来发展前景进行了展望。  相似文献   

9.
丝素膜固定β—葡萄糖苷酶性质的研究   总被引:2,自引:0,他引:2  
采用共价法和包埋法将酶固定在丝素蛋白膜上,方法简便易行,制造的酶膜稳定,机械性能好,固定化酶的最适pH值由45偏向中性,热稳定性提高,70℃保存1小时活力几乎不降低,而溶液酶降低85%左右,同时pH值稳定性也有所提高,固定化酶膜可用于果酒增香中  相似文献   

10.
以小鼠胚胎干细胞(ES)为种子细胞,使用改良的4-/4+ RA方案,诱导小鼠ES细胞在丝素材料上向神经细胞分化,探讨丝素材料对其生长、黏附、分化等情况的影响。将小鼠ES细胞悬浮培养4 d得到的拟胚体(EBs)分别接种到经丝素膜和明胶包被的培养皿上进行诱导,比较不同材料上EBs的贴壁率及向神经元分化的比率。结果表明EBs在明胶和柞蚕丝素蛋白膜(TSF)上贴壁较快,平均贴壁率为90.3%和84.4%,在桑蚕丝素蛋白膜(SF)上贴壁较慢,贴壁率低,仅为38.5%,同时三者神经元的分化比率均能达到40%以上,无明显差异。通过以上实验,我们得出,TSF有望成为小鼠ES细胞向神经细胞分化的支架材料。  相似文献   

11.
Glucose oxidase (GOD) was immobilized in Bombyx mori silk fibroin membrane by only physical treatment, i.e., stretching without any chemical reagents. This is due to the structural transition of the silk fibroin membrane from random coil to antiparallel beta-sheet (Silk II) induced by the stretching treatment. Permeability coefficients of glucose and oxygen through the fibroin membrane were determined; the permeability of glucose decreased with increasing degree of stretching. The immobilized enzyme activity was characterized with apparent Michaelis constant K(m) (app) and maximal activity V(m). Optimum pH of the activity of the immobilized enzyme was shifted to the value around neutrality, and the activity was maintained to the higher values on both sides of the optimum pH compared with the case of free enzymes. Thermal stability was scarcely lost even at 50 degrees C, although the free enzyme lost about 70% of the original activity. Thus, the stabilities of the enzyme vs. pH and heat were much improved by the immobilization with silk. Glucose sensor prepared with this GOD-immobilized fibroin membrane was developed; the capabilities such as the response time, calibration curve, and repeating usage were determined.  相似文献   

12.
Chemical modifications of silk fibroin were attempted in order to add new properties and functions to silk fibroin. The arginyl residue in solubilized silk fibroin was chemically modified with the reaction of 1,2-cyclohexanedione in borate buffer. FT-i.r. and c.d. spectra of the silk fibroin before and after the modification indicated that the fraction of random coil conformation increased with the modification. The chemical stability of the modified silk fibroin membrane was investigated in vitro with phosphate buffer. The modified arginyl residue in the membrane was considerably regenerated with the treatment in phosphate buffer.  相似文献   

13.
Degradation mechanism and control of silk fibroin   总被引:1,自引:0,他引:1  
Lu Q  Zhang B  Li M  Zuo B  Kaplan DL  Huang Y  Zhu H 《Biomacromolecules》2011,12(4):1080-1086
Controlling the degradation process of silk is an important and interesting subject in the field of biomaterials. In the present study, silk fibroin films with different secondary conformations and nanostructures were used to study degradation behavior in buffered protease XIV solution. Different from previous studies, silk fibroin films with highest β-sheet content achieved the highest degradation rate in our research. A new degradation mechanism revealed that degradation behavior of silk fibroin was related to not only crystal content but also hydrophilic interaction and then crystal-noncrystal alternate nanostructures. First, hydrophilic blocks of silk fibroin were degraded. Then, hydrophobic crystal blocks that were formerly surrounded and immobilized by hydrophilic blocks became free particles and moved into solution. Therefore, on the basis of the mechanism, which enables the process to be more controllable and flexible, controlling the degradation behavior of silk fibroin without affecting other performances such as its mechanical or hydrophilic properties becomes feasible, and this would greatly expand the applications of silk as a biomedical material.  相似文献   

14.
Horseradish peroxidase (HRP) was immobilized onto a membrane of the regenerated silk fibroin (RSF) from waste milk. The structure of the blend membrane of RSF and HRP was characterized by the use of IR spectra. A second generation of H2O2 sensor on the basis of the immobilized HRP was fabricated, in which tetrathiafulvalene acts as mediating electron transfer between the immobilized enzyme and a glassy carbon electrode. Dependencies of pH and temperature on the H2O2 biosensor were checked by utilizing cyclic voltammetry. The sensor exhibits high sensitivity, good reproducibility and storage stability.  相似文献   

15.
Horseradish peroxide (HRP) was covalently coupled to three-dimensional (3D) silk fibroin scaffolds using water-soluble carbodiimide. Stable, bilaterally symmetrical immobilized HRP gradient patterns were generated within 3D silk fibroin scaffolds using the principles of diffusion. Gradients of immobilized HRP activity were controlled using variables of volume and concentration of HRP solution activated by the carbodiimide. The method developed can be extended to immobilize a variety of proteins and small molecules on several types of porous, interconnected materials. This technique of patterning enzymes and proteins in a gradient manner offers new options in the field of chemotaxis, tissue engineering, and biosensors.  相似文献   

16.
An in vitro silk fibroin production system has been developed by culture of posterior silk glands from Bombyx mori. A large amount of the silk fibroin was produced continuously and effectively with a rotation culture procedure. Modified Grace's insect medium was used, and oxygen bubbling in the medium was performed. In addition, half of the medium was replaced with fresh medium every 6 h. The production yield of silk fibroin produced after 100 h culture was 81 mg/g wet weight of posterior silk gland. This culture system was used successfully for efficient (15)N isotope labeling of silk fibroin, which is required for (15)N solid state nuclear magnetic resonance (NMR) analysis of silk fibroin. Moreover, the introduction of fluorinated amino acids into silk fibroin was also carried out using this culture system. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
Unusual protein behavior illustrated with silk fibroin   总被引:1,自引:0,他引:1  
We investigated the interaction between phospholipid membranes and silk fibroin recovered from the posterior silk gland of the silkworm. Observations of the planar lipid bilayer membrane and electron microscopic observations of liposomes showed that newly constructed silk fibroin, existing in the form of filaments, quickly penetrates phospholipid membranes without bursting them.  相似文献   

18.
Zhang C  Song D  Lu Q  Hu X  Kaplan DL  Zhu H 《Biomacromolecules》2012,13(7):2148-2153
Although natural silk fibers have excellent strength and flexibility, the regenerated silk materials generally become brittle in the dry state. How to reconstruct the flexibility for silk fibroin has bewildered scientists for many years. In the present study, the flexible regenerated silk fibroin films were achieved by simulating the natural forming and spinning process. Silk fibroin films composed of silk I structure were first prepared by slow drying process. Then, the silk fibroin films were stretched in the wet state, following the structural transition from silk I to silk II. The difference between the flexible film and different brittle regenerated films was investigated to reveal the critical factors in regulating the flexibility of regenerated silk materials. Compared with the methanol-treated silk films, although having similar silk II structure and water content, the flexible silk films contained more bound water rather than free water, implying the great influence of bound water on the flexibility. Then, further studies revealed that the distribution of bound water was also a critical factor in improving silk flexibility in the dry state, which could be regulated by the nanoassembly of silk fibroin. Importantly, the results further elucidate the relation between mechanical properties and silk fibroin structures, pointing to a new mode of generating new types of silk materials with enhanced mechanical properties in the dry state, which would facilitate the fabrication and application of regenerated silk fibroin materials in different fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号