首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 473 毫秒
1.
胡超凡  贾丽 《激光生物学报》2009,18(4):561-568,F0003
磁性微粒作为一种新型的功能材料,已经在生物分离、生物医学和环境工程等领域得到了广泛的应用.作者对硅烷化试剂修饰的Fe3O4磁性微粒的制备方法以及硅烷化试剂修饰的Fe3O4磁性微粒在各个领域的最新应用进展进行了评述,引用文献62篇.  相似文献   

2.
酶是高效的生物催化剂,在生物技术领域有广泛的应用。然而,不可再生催化的高成本和酶的有效成分分离回收,是实现大规模工业化应用需要解决的关键问题。磁性纳米粒子(magnetic nanoparticles,MNPs)具有优异的磁回收性质。通过设计和制备功能化MNPs作为固定化酶的多功能载体,是解决这一问题的有效途径之一,可为酶的工业化大规模应用提供条件。近年来,功能化磁性纳米粒子在酶的固定化领域基于载体性质、固定化方法和应用有广泛研究。文中重点介绍了近年来各种功能化磁性纳米载体,特别是Fe3O4纳米粒子,在固定化酶中的应用。根据功能化试剂的差异分类,实例讨论了不同功能化修饰的磁性纳米载体对酶的固定化,包括硅烷修饰的磁性纳米载体、有机聚合物修饰的磁性纳米载体、介孔材料修饰的磁性纳米载体以及金属-有机骨架材料(metal-organic framework,MOF)修饰的磁性纳米载体。同时,结合可持续工业催化的发展要求,对磁性复合载体固定化酶的发展前景进行了展望。  相似文献   

3.
目的:对纳米级Fe3O4磁性粒子与人肝癌细胞HepG-2及人正常肝细胞L02作用的生物学行为进行实验研究。方法:通过化学沉淀法制备粒径为10nm左右的纳米级Fe3O4磁性粒子,观察其表征;将不同浓度纳米级Fe3O4粒子加入培养液分别与HepG-2混合培养检测凋亡坏死率;将相同浓度粒子分别与HepG-2和L02混合培养,对两者作用的差异进行动态观察比较。结果:纳米级Fe3O4磁性粒子能在肝癌细胞HepG-2细胞内稳定存在72小时以上,有良好的生物相容性;透射电镜观察到Fe3O4磁性粒子主要分布于细胞的溶酶体及吞噬泡内。共培养1小时后即有较多的纳米磁性粒子进入HepG-2内,而3小时后才见L02细胞内有少量的磁性粒子进入。结论:此实验结果为磁性纳米粒子与肿瘤细胞微观结构的作用提供了有意义的实验数据,并可能对应用磁性纳米粒子治疗恶性肿瘤提供有价值的依据。  相似文献   

4.
脂质纳米粒子是用生物可降解的脂质制备,故这种载体系统拥有很好的生物相容性和安全性。本文着重介绍脂质纳米粒子在药物中的应用,如抗肿瘤药物、抗病毒药物、抗炎症药物、免疫药物、抗真菌药物、降血糖药物等。最后,指出了脂质纳米粒子的发展前景。  相似文献   

5.
生物矿化在自然界广泛存在。矿化过程通过精确控制形成精致、有序的分级结构,如骨骼、牙齿、贝壳、齿舌等,迄今已发现约60多种生物矿化物,其中钙化物的种类最多,铁化物有5—6种1,2。磁铁矿(Fe3O4)在众多的生物体内均有发现3。纳米磁铁矿在生物医学领域有广泛的应用前景,如制备磁性微球、磁性微囊、磁性脂质体、磁性微乳等4,5。生物矿化吸引着众多科学家的关注,人们期望通过矿化结构的研究,了解矿化机理,并利用仿生学原理合成功能性材料。    相似文献   

6.
漆红兰 《生命的化学》2002,22(6):586-589
磁性微粒作为一种新型的功能高分子材料,在生物学,细胞学,生物医学工程等领域得到广泛的应用。文中对磁性微粒的性质,制备以及在固定化酶,靶向药物,细胞分离及免疫分析中的应用,尤其是在免疫分析中的应用进行了介绍。  相似文献   

7.
杨阳  高永良  梅兴国 《生物磁学》2009,(16):3185-3187,3193
聚酸酐材料是一种良好的生物可降解材料,它可以作为药物载体将药物递送入人体的各个器官,如脑、骨骼、血管等,也可作为基因的载体对患者进行基因治疗。聚酸酐的合成工艺简单、成本低廉,可以满足不同的用途。它奇在人体内降解为对人体无害的二元酸而排除体内,具有良好的生物相容性。文中综述了聚酸酐的合成,聚酸酐控释制剂的制备工艺、降解、体内安全性和临床应用方面的研究进展,并提出了今后的发展方向。聚酸酐在医学方面的研究和应用必将日益广泛。  相似文献   

8.
海藻酸钠壳聚糖微球是具有生物粘附性且能结合和传递大分子药物的天然高分子材料,且在生物医学领域具有广阔应用前景的药物载体。它具有生物黏附性、生物相容性、生物可降解性、对人体无毒性且能够结合和传递大分子药物的天然高分子材料。海藻酸钠壳聚糖微球作为载药微球具有提高药物的生物利用度、延长药物的作用时间等优点。国内外近些年已将其应用于药剂学领域,以及将其作为药物载体经微球化与药物结合形成给药系统的研究也在逐步开展并取得了较多成果。本文主要阐述海藻酸钠壳聚糖微球的主要生物特性、作用特点及其在医学领域中应用的研究进展,并对其应用前景进行探讨。  相似文献   

9.
用壳聚糖亲和磁性微球纯化血浆凝血酶的研究   总被引:1,自引:0,他引:1  
通过化学共沉淀法合成纳米粒子Fe3O4磁核,以壳聚糖为包裹材料包被自制的磁核,采用乳化交联法制备了具有核-壳结构的磁性高分子微球-壳聚糖磁性微球,并偶联肝素配基得到了一种新型亲和磁性微球,应用SEM、FT-IR、XRD等对微球的粒径、形貌、结构和磁响应性进行了表征.考察了该亲和磁性微球对凝血酶的分离纯化性能,并与传统的DEAE离子交换色谱法进行了比较.结果表明,所得亲和磁性微球具有较窄的粒径分布、形状规整,粒径在50nm左右.对凝血酶一步吸附纯化获得了比活为1879.71U/mg的酶,得率85%,纯化倍数11.057,而传统柱层析法得率为72%,纯化倍数仅为5.33.制备了壳聚糖亲和磁性微球,并将磁分离技术应用于凝血酶的分离纯化,得到了较好的效果,这将对于凝血酶的纯化及生产具有一定参考价值.  相似文献   

10.
目的:介绍纳米粒载体的制备、优点和应用进展,为纳米粒在新的领域的应用提供依据.方法:以纳米粒制备方法和基质材料的不断发展以及各个领域的应用为线索来综述.结果:纳米粒的制备方法有离子交换法、乳化法和自组装法,基质材料有蛋白质和多糖等,纳米粒本身无毒性,能增加所载物的溶解度和生物利用度,提高靶向性及效率,在抗肿瘤治疗、神经系统治疗和药物检测等多方面有广泛的应用.结论:纳米粒作为一种载体,在药物临床研究、药理研究和生物分析等方面都得到了广泛应用,并有可能开发为其他领域的运送体系,有广阔的应用前景.  相似文献   

11.
Fe_3O_4磁性纳米粒子由于其良好的磁学性能,被广泛应用到了化学、生物、物理、环境保护等各个领域。尤其是在生物医学领域中的应用越来越受到研究者的关注。由于其所具有的优秀的超顺磁性性质,Fe_3O_4磁性纳米粒子可以作为造影剂,增强核磁共振成像的对比度和成像效果;也可以结合到纳米载药系统内用于药物的靶向输送;也可以包埋到蛋白内部用于蛋白的磁性分离;也可以用于基因治疗,提高靶细胞的转染效率;由于其在近红外光的作用下具有很好的光热转换效果,使温度升高,展现出的良好热疗效果,Fe_3O_4磁性纳米粒子又可以用于癌细胞的热疗。本文针对其在该领域中作为药物的靶向传递,蛋白的磁分离,核磁共振成像,热疗,以及基因治疗的载体等方面的研究应用进行了系统性的总结,阐述了Fe_3O_4磁性纳米粒子在生物医学领域中各种应用进展和优势。  相似文献   

12.
The present paper describes a preparation method and molecular investigations of new biodegradable proton-conducting carbohydrate polymer films based on alginic acid and benzimidazole. Electric conductivity was studied in a wide temperature range in order to check the potential application of these compounds as membranes for electrochemical devices. Compared to pure alginic acid powder or its film, the biodegradable film of alginic acid with an addition of benzimidazole exhibits considerably higher conductivity in the range above water boiling temperature (up to approximately 10−3 S/cm at 473 K). Due to this important feature the obtained films can be considered as candidates for application in high-temperature electrochemical devices. The microscopic nature and mechanism of the conduction in alginate based materials were studied by proton nuclear magnetic resonance (NMR). The results show specific changes in morphology and molecular dynamics between pure alginate powders and the films obtained without and with the addition of benzimidazole molecules.  相似文献   

13.
A new approach toward the development of advanced immunosensors based on chemically functionalized core-shell-shell magnetic nanocomposite particles, and the preparation, characteristics, and measurement of relevant properties of the immunosensor useful for the detection of alpha-1-fetoprotein (AFP) in clinical immunoassays. The core-shell NiFe2O4/3-aminopropyltriethoxysilance (APTES) (NiFe2O4@APTES) was initially prepared by covalent conjugation, then gold nanoparticles were adsorbed onto the surface of NiFe2O4@APTES, and then anti-AFP molecules were conjugated on the gold nanoparticles. The core-shell-shell nanocomposite particles not only had the properties of magnetic nanoparticles, but also provided a good biocompatibility for the immobilization of biomolecules. The core-shell-shell nanostructure present good magnetic properties to facilitate and modulate the way it was integrated into a carbon paste. The analytical performance of the immunosensor was investigated by using an electrochemical method. Under optimal conditions, the resulting composite presents good electrochemical response for the detection of AFP, and exhibits wide linear range from 0.9 to 110 ng/mL AFP with a detection limit of 0.5 ng/mL. Moreover, the proposed immunosensors were used to analyze AFP in human serum specimens. Analytical results, obtained for the clinical serum specimen by the developed immunosensor, were in accordance with those assayed by the standard ELISA. Importantly, the proposed immunoassay system could be further developed for the immobilization of other antigens or biocompounds.  相似文献   

14.
Poly(hydroxyalkanoates) PHAs are synthesized by many bacteria as inclusion bodies and their biodegradability and structural diversity have been studied with a view to their potential application as biodegradable materials. A method based on FT-IR was developed to carry out rapid qualitative and quantitative analysis of PHAs in Pseudomonas, when they were grown on sodium octanoate. Using absorbance of the ester band of PHAs, a rapid method was reported to distinguish PHB and PHO and to determine polymer content in intact bacteria. Relative areas in which the C=O area was normalized to the area of the peak representing the amid group (1656 cm(-1)) characteristic of bacteria were calibrated to the polymer content which was determined after solvent extraction. Polymer contents vary from 0% to 53% and depend on the nature of the bacteria. Among 27 strains of Pseudomonas belonging to the rRNA homology group I, a very low amount of bacteria were able to produce PHB. The majority of strains were able to produce a copolymer, PHO, in which the major constituent unit is 3-hydroxyoctanoate. The FT-IR results were further confirmed by gas chromatography analysis after methanolysis of polymer, but FT-IR method requires less preparation of sample than gas chromatography and it is very useful for screening a large variety of Pseudomonas.  相似文献   

15.
Microbial cells of Pseudomonas delafieldii were coated with magnetic Fe3O4 nanoparticles and then immobilized by external application of a magnetic field. Magnetic Fe3O4 nanoparticles were synthesized by a coprecipitation method followed by modification with ammonium oleate. The surface-modified Fe3O4 nanoparticles were monodispersed in an aqueous solution and did not precipitate in over 18 months. Using transmission electron microscopy (TEM), the average size of the magnetic particles was found to be in the range from 10 to 15 nm. TEM cross section analysis of the cells showed further that the Fe3O4 nanoparticles were for the most part strongly absorbed by the surfaces of the cells and coated the cells. The coated cells had distinct superparamagnetic properties. The magnetization (delta(s)) was 8.39 emu.g(-1). The coated cells not only had the same desulfurizing activity as free cells but could also be reused more than five times. Compared to cells immobilized on Celite, the cells coated with Fe3O4 nanoparticles had greater desulfurizing activity and operational stability.  相似文献   

16.
Biodegradable biopolymers attract much attention in biology and medicine due to its wide application. The present review considers a biodegradable and biocompatible polymer of bacterial origin, poly(3-hydroxybutyrate), which has wide perspectives in medicine and pharmaceutics. It highlights basic properties of biopolymer (biodegradability and biocompatibility) and also biopolymer systems: various materials, devices and compositions based on the biopolymer. Application of poly(3-hydroxybutyrate)-based biopolymer systems in medicine as surgical implants, in bioengineering as cell culture scaffolds, and in pharmacy as novel drug dosage forms and drug systems are also considered.  相似文献   

17.
Li Y  Lin H  Deng C  Yang P  Zhang X 《Proteomics》2008,8(2):238-249
In this work, we present, to our knowledge, the first demonstration of the utility of iron oxide magnetic microspheres coated with gallium oxide for the highly selective enrichment of phosphopeptide prior to mass spectrometric analysis. These microspheres that we prepared not only have a shell of gallium oxide, giving them a high-trapping capacity for the phosphopeptides, but also their magnetic property enables easy isolation by positioning an external magnetic field. Tryptic digest products of phosphoproteins including beta-casein, ovalbumin, casein, as well as five protein mixtures were used as the samples to exemplify the feasibility of this approach. In very short time (only 0.5 min), phosphopeptides sufficient for characterization by MALDI-TOF-MS were selectively enriched by the Ga(2)O(3)-coated Fe(3)O(4) microspheres. The performance of the Ga(2)O(3)-coated Fe(3)O(4) microspheres were further compared with Fe(3+)-immobilized magnetic silica microspheres, commercial Fe(3+)-IMAC resin, and TiO2 beads for enrichment of peptides originating from tryptic digestion of beta-casein and BSA with a molar ratio of 1:50, and the results proved a stronger selective ability of Ga(2)O(3)-coated Fe(3)O(4) microspheres over the other materials. Finally, the Ga(2)O(3)-coated Fe(3)O(4) microspheres were successfully utilized for enrichment of phosphopeptides from digestion products of rat liver extract. All results show that Ga(2)O(3)-coated Fe(3)O(4) microsphere is an effective material for selective isolation and concentration of phosphopeptides.  相似文献   

18.
The study presents the preparation of some composite materials with magnetic properties by two different encapsulation methods of magnetite (Fe3O4) in a polymer matrix based on carboxymethyl starch-g-polylactic acid (CMS-g-PLA). The copolymer matrix used to obtain the magnetic nanocomposites was synthesized by grafting reaction of carboxymethyl starch (CMS) with d,l-lactic acid (DLLA), in the presence of Sn octanoate [Sn(Oct)2] as catalyst. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3 (molar ratio 1/2). The magnetic composites were prepared by precipitation method in acetone (non-solvent) of the DMSO solutions of magnetite and copolymer, and synthesis in situ of the nanocomposites. In the first case, the particle size measured by DLS-technique was 168 nm, and the magnetization was 46.82 emu/g, while after in situ synthesis, the composite materials showed smaller size (141 nm), but the magnetization was reduced (3.04 emu/g). The higher magnetization in the first case is due to the great degree of encapsulation of the magnetite, which was about 43.4 wt.%, compared to 4.37 wt.% for the in situ synthesis (determined by thermogravimetry). The CMS-g-PLA copolymer, magnetite, and the nanocomposites were characterized by infrared spectroscopy (FTIR), near infrared chemical imagistic (NIR-CI), dynamic light scattering (DLS) technique, X-ray diffraction (WAXD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and thermal analyses. Since the polymer matrix and magnetite are biodegradable and biocompatible, the magnetic nanocomposites can be used for conjugation of some drugs. The polymer matrix CMS-g-PLA acts as a shell, and vehicle for the active component, whereas magnetite is the component which makes targeting possible by external magnetic field manipulation.  相似文献   

19.
目的:采用PLGA-PEG为聚合材料,制备RGD修饰包载超顺磁性四氧化三铁纳米粒子(RGD-NP—Fe3O4),用于脑胶质瘤细胞靶向核磁共振成像纳米探针。方法:采用沉淀法制备RGD修饰的栽超顺磁性纳米粒,考察纳米粒的粒径,电位等理化指标以及细胞毒性。通过细胞以及肿瘤球摄取实验,考察RGD.NP—Fe304的脑胶质瘤细胞靶向性。结果:制备得到的RGD-NP-Fe3O4粒径在85±7.5nm,电位为18+1.15mV。纳米粒浓度在300μg/mL范围内,对脑胶质瘤细胞均无显著毒性。经过RGD修饰后脑胶质瘤细胞U87对纳米粒的摄取效率大大提高,纳米粒穿透肿瘤球能力显著增强。结论:RGD修饰包载超顺磁性氧化铁纳米粒是一种潜在的高效的脑胶质瘤细胞靶向诊断纳米探针和靶向给药系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号