首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
灵芝液体发酵条件的研究   总被引:12,自引:0,他引:12  
本文采用液体摇瓶培养法,对灵芝(GanodermaLucidum)液体发酵的适用温度、摇瓶装量、摇瓶转速、培养基初始pH、碳、氮源及其最适浓度进行了探讨。结果表明,灵芝液体发酵的适用温度为25℃,摇瓶装量为100~120ml/500ml三角瓶,摇瓶转速为120~150rpm,培养基初始pH为45~50,适用碳,氮源分别是玉米粉,黄豆饼粉,其最适浓度分别为3%、25%  相似文献   

2.
高产油脂酵母菌选育及摇瓶发酵条件的研究   总被引:26,自引:1,他引:25  
经紫外线和EMS复合诱变选育出一株高产油脂的优良酵母菌株,命名为Lipomyces.Starkeyi HL。通过摇瓶培养,对各项与菌体产油脂相关的因素作了单因子实验,确定了摇瓶发酵培养的最佳产油脂条件:碳源,废糖液165.7ml/L;氮源,硫酸铵1.08g/L;C/N:61:1;培养温度为28℃;接种量10%;发酵时间96h; pH5.0。最后可得油脂产量 5.9g/L;菌体生物量 11.0g/L;油脂含量 53.6%。对菌体内油脂组成进行了气相色谱与质谱分析,结果如下:软脂酸33.2%,棕  相似文献   

3.
在无血清和含1.0%、5.0%血清培养的新生大鼠心肌细胞标本上,去甲肾上腺素(NE,2.0μmo1/L)使细胞蛋白质含量(Lowry法)分别比相应对照组增加40%、26%、19%(P均<0.01);细胞^3H-亮氨酸参入量与NE浓度呈正性剂量依赖性,最大效应浓度为20.0μmo1/L;无血清培养体系中,0.2.2.0、20μmo1/L的NEW使参入量分别比对照增加17.8%、35.3%、37.7%  相似文献   

4.
大叶紫花苜蓿愈伤组织原生质体再生植株   总被引:15,自引:0,他引:15  
大叶紫花苜蓿下胚轴诱导的愈伤组织在继代培养基上生长快速,易于分散。继代第12d的愈伤组织原生质体的得率为6.5×107/g鲜重。原生质体培养基为SH基本培养基,含有1.0mg/L2,4-0、0.5mg/LBA、2.0g/LCH、2%蔗糖、6%葡萄糖、5mmol/LMES,培养密度为1.0×105/mL。培养至第12d时的原生质体再生细胞植板率为3.7%。由原生质体形成的小愈伤组织在含2.0mg/L2,4-D的MS固体培养基上大量增殖。增殖的愈伤组织转移至2.0mg/L2-ip+0.1mg/LNAA的B5培养基上,形成体细胞胚并发育成完整植株。  相似文献   

5.
多孔菌液体发酵的研究   总被引:1,自引:0,他引:1  
多孔菌Polyprouselegans(Bull)Fr。是一种新开发的真菌类中药材资源,经对其几个主要液体发酵培养条件的筛选研究,初步得出多孔菌深层发酵的基础参数:PH5.6~0.1;温度24~28℃;培养基为麦麸2.5%,蔗糖4%,NH4NO30.05%,KH:PO40.05%,MgSO4·7H2O0.025%。另外,摇瓶种子培养条件是:PH5.6~6.1;温度28℃;培养基为PDA+VB1,添加3‰琼脂,时间为96hr。  相似文献   

6.
在无血清和含1.0%、5.0%血清培养的新生大鼠心肌细胞标本上,去甲肾上腺素(NE,2.0μmol/L)使细胞蛋白质含量(Lowry法)分别比相应对照组增加40%、26%、19%(P均<0.01);细胞3H-亮氨酸参入量与NE浓度呈正性剂量依赖性,最大效应浓度为20.0μmol/L;无血清培养体系中,0.2、2.0、20μmol/L的NE使参入量分别比对照增加17.8%、353%、37.7%;1.0%血清培养体系中分别比对照增加16.2%、27.9%、31.6%(P均<0.05);哌唑嗪(2.0μmol/L)可阻断NE的促蛋白质合成作用,心得安(2.0μmol/L)则无此效应。提示在无血清或低浓度血清培养体系中,NE可促进心肌细胞蛋白质合成,增加细胞蛋白质含量,该作用可能是通过α1肾上腺素能受体介导。  相似文献   

7.
芽孢杆菌M50产生β—甘露聚糖酶的条件研究   总被引:16,自引:0,他引:16  
从土壤中分离到9株产生β-甘露聚糖酶的芽孢杆菌(Bacillus sp.)。Bacillus sp.M50250mL三角瓶摇瓶培养试验,以4%的魔芋粉为碳源,1.0%(NH4)2SO4为氮源,0.35%Na2CO3,30~34℃培养60h产酶达到高峰。酶活力为180~220u/mL。100L罐发酵,在30~32℃,1:0.75vvm通气量,200r/min条件下,发酵液酶活力高达330u/mL。  相似文献   

8.
陆地棉胚性愈伤组织原生质体的制备,培养及植株再生   总被引:8,自引:0,他引:8  
以陆地棉栽培品种“鲁棉6号”下胚轴的胚性愈伤组织为材料,制备并培养原生质体。采用继代培养7 ̄9d、活力旺盛的胚性愈伤组织,在1%纤维素酶、1%果胶酶、0.7mmol/L KH2PO4、2.5mmol/L Ca^2+、0.5mol/L甘露醇、pH5.8、30℃的条件下,具活力的原生质体得率最高。经分离纯化后,原生质体在含有0.45mol/L葡萄糖的K3无机盐、NT有机物并附加0.1mg/L,2,4-  相似文献   

9.
细菌产木聚糖酶发酵条件的研究*   总被引:3,自引:0,他引:3  
研究了碳源、氮源以及其他因子对木聚糖酶高产菌WLUN024(Pseudomonas sp.)产酶的影响,结果表明在麸皮6g/L、(NH4)2SO4 0.8g/L、K2HPO4 0.4g/L、接种量5%-10%的条件下,37℃培养36h,其木聚糖酶活力可达600IU/mL。同时研究了在较优条件下该菌的摇瓶产酶曲线。  相似文献   

10.
肖亚中  张洁 《生物学杂志》1996,13(5):23-23,42
对栀子蓝色素摇瓶发酵生产的培养基配方进行了优化研究。结果表明,在栀子基质溶液中添加1.5%的可溶性淀粉、0.75%的胰蛋白胨和0.10%的MgSO4,可使栀子蓝色素的摇瓶产量提高15.6%。  相似文献   

11.
Bacterial cellulose finds novel applications in biomedical, biosensor, food, textile and other industries. The optimum fermentation conditions for the production of cellulose by newly isolated Enterobacter amnigenus GH-1 were investigated. The strain was able to produce cellulose at temperature 25–35°C with a maximum at 28°C. Cellulose production occurred at pH 4.0–7.0 with a maximum at 6.5. After 14 days of incubation, the strain produced 2.5 g cellulose/l in standard medium whereas cellulose yield in the improved medium was found to be 4.1 g/l. The improved medium consisted of 4% (w/v) fructose, 0.6% (w/v) casein hydrolysate, 0.5% (w/v) yeast extract, 0.4% (w/v) disodium phosphate, and 0.115% (w/v) citrate. Addition of metal ions like zinc, magnesium, and calcium and solvents like methanol and ethanol were found to be stimulatory for cellulose production by the strain. The strain used natural carbon sources like molasses, starch hydrolysate, sugar cane juice, coconut water, coconut milk, pineapple juice, orange juice, and pomegranate juice for growth and cellulose production. Fruit juices can play important role in commercial exploitation of bacterial cellulose by lowering the cost of the production medium.  相似文献   

12.
Microbial cellulose has many potential applications due to its excellent physical properties. The production of cellulose fromAcetobacter xylinum in submerged culture is, however, beset with numerous problems. The most difficult one has been the appearance of negative mutants under shaking culture conditions, which is deficient of cellulose producing ability. Thus genetic instability ofAcetobacter xylinum under shaking culture condition made developing a stable mutant major research interest in recent years. To find a proper type of bioreactor for the production of microbial cellulose, several production systems were developed. Using a reactor system with planar type impeller with bottom sparging system, it was possible to produce 5 g/L microbial cellulose without generating cellulose minus mutants, which is comparable to that of static culture system.  相似文献   

13.
王春芳  马诗淳  黄艳  刘来雁  凡慧  邓宇 《微生物学报》2016,56(12):1856-1868
【目的】比较和分析从堆肥中富集的水稻秸秆降解菌系F1和F2的纤维素分解能力、微生物群落结构及其在秸秆降解过程中的演替,从而探究微生物群落结构与秸秆降解效率的相关性。【方法】采用DNS(3,5-二硝基水杨酸,3,5-dinitrosalicylic acid)定糖法测定发酵液中的外切纤维素酶活;采用范氏(Van Soest)洗涤纤维分析法测定发酵前与发酵后的秸秆纤维素、半纤维素、木质素的含量,并计算降解率;采用16S r RNA基因序列分析和实时荧光定量PCR(Quantitative real-time PCR,Q-PCR)对秸秆降解过程中的微生物物种组成及特定的功能微生物进行定性和定量分析。【结果】复合菌系F1的水稻秸秆总降解率、纤维素降解率、半纤维素降解率显著高于复合菌系F2;2种复合菌系的外切纤维素酶活性与cel48基因的拷贝数变化趋势一致;复合菌系F1的物种较丰富,优势物种是好氧细菌,复合菌系F2的物种组成较单一,培养后期具有较高比例的厌氧纤维素分解菌;培养前4天,复合菌系F1和F2的优势物种均为Unclassified Bacillales和Bacillus;第4天之后,不同复合菌系的优势物种及丰度出现差异,F1的优势物种主要属于Bacteroidetes,F2的优势物种主要属于Firmicutes;虽然Petrimonas和Pusillimonas是培养后期的共有优势物种,但是Petrimonas在复合菌系F2中的相对丰度(38.30%)显著高于F1(9.47%),且培养第8天的F2中的Clostridiales OPB54增加至14.85%。【结论】cel48基因拷贝数变化与秸秆纤维素的降解效率、外切纤维素酶活性变化具有一定的相关性,cel48基因可作为潜在的生物分子标记监测秸秆纤维素的降解过程;微生物群落结构对秸秆纤维素的降解效率具有显著影响,Unclassified Bacillales,Bacillus,Petrimonas,Pusillimonas是复合菌系F1和F2降解秸秆纤维素过程中的重要物种。  相似文献   

14.
Summary Sporocytophaga myxcoccoides was grown in a 31 air-lift fermenter using a medium containing 2% w/v insoluble cellulose. The cellulose content of the medium reduced the kLa of the fermenter but during growth the dissolved oxygen concentration did not fall below 75% saturation. Rates of cellulose degradation and extracellular enzyme production were similar to those reported for a stirred-tank fermenter.  相似文献   

15.
Effect of various cultural parameters on cellulose degradation, glucose accumulation and ethanol production byClostridium thermocellum ATCC 27405 were investigated. Optimum pH values for glucose accumulation and ethanol production were determined as 7 and 10, respectively. Highest amount of ethanol (0.92 g/l) was obtained from the culture which contains 10 g urea/l with 34.5% decrease in glucose accumulation. Addition of 100 mM phosphate to the medium increased ethanol production while cellulose degradation and sugar accumulation decreased by 34 and 99%, respectively. Among minerals tested, Mg+2 was found to be the most important element which affects cellulose degradation. When the medium contained no Mg+2, residual cellulose concentration was 4.3 g cellulose/l. When the cultural parameters were optimised, glucose accumulation started at early days of fermentation and glucose concentration was 60% higher than that of the control at the 10th day of fermentation.  相似文献   

16.
The thermophilic fungus Sporotrichum cellulophilum was immobilized with nonwoven materials for cellulase production. The cellulose powder concentration in the medium was an important factor controlling cellulase production. When the cellulose powder concentration in the nonwoven materials was more than 4%, cellulase production was suppressed. The growth of the immobilized fungi depended on the spaces in the nonwoven materials. Immobilized growing fungi were retained by the non-woven materials, and the supernatant medium did not contain mycelia. The heat stability of the immobilized growing fungus was higher than that of the free fungus. The immobilized fungus gave the same FPA as the free mycelium, but the lag time for cellulase production in the immobilized fungus was longer. It was necessary for the only medium to be changed in order to get the immobilized growing fungus to continue producing cellulase. In this instance there was no difference of lag time in comparison with the free cells, and the supply of cellulose powder and polypepton was reduced to two-thirds. After 23 exchanges of the medium (2.6 mg cellulose powder/1 cm(3) nonwoven materials) FPA value was maintained. The periodic batch culture was continued for 69 days.  相似文献   

17.
近年来,具有农业、能源和环保价值的昆虫微生物种类和基因得到了开发,昆虫肠道微生物展示了其巨大的应用潜力,本研究旨在从蟋蟀后肠分离和鉴定纤维素降解细菌。首先采用羧甲基纤维素钠液体培养基对蟋蟀后肠中的微生物进行富集培养,然后使用羧甲基纤维素钠固体培养基分离和筛选单菌落,再通过16S rRNA测序对纤维素降解细菌进行分子鉴定,最后通过刚果红染色来进一步分析细菌降解纤维素的能力。从蟋蟀后肠中共分离出20株纤维素降解细菌,16S rRNA基因测序结果显示来自肠杆菌属(Enterobacter)9株,不动杆菌属(Acinetobacter)7株,克雷伯氏菌属(Klebsiella)2株,鞘氨醇杆菌属(Sphingobacterium)1株和葡萄球菌属(Staphylococcus)1株。刚果红染色试验结果显示,克雷伯氏菌属两株PDSCDXS_2B和8B,鞘氨醇杆菌属PDSCDXS_7C和不动杆菌属PDSCDXS_12C具有较高的纤维素降解能力。这是首次从蟋蟀后肠分离和筛选出来具有纤维素降解能力的细菌,为昆虫源纤维素降解细菌的研究提供了微生物资源。  相似文献   

18.
Utilization of -xylose as carbon source for production of bacterial cellulose was studied. Seventeen strains of acetic acid bacteria were screened for their cellulose productivity in -glucose, -xylose, and -xylose/ -xylulose mixed media, respectively. -Xylose was not well metabolized by any bacterial strains that exhibited high cellulose production in -glucose medium. Consequently, bacterial cellulose production in -xylose medium was unsuccessful. -Xylose, however, became utilizable substrate for bacterial strains if xylose-isomerase was added to the medium. Acetobacter xylinus IFO 15606 was the best cellulose producer in -xylose/ -xylulose mixed medium, so cultural conditions were studied for enhanced cellulose production. With pH controlled, the strain could produce cellulose at a yield exceeding 0.3 g per 100 ml of -xylose/ -xylulose mixed medium, which was comparable to the yields in -glucose medium by excellent producers in the literature.  相似文献   

19.
Cellulose producing bacterial strain was isolated from citrus fruit juice fungus. The isolated strain was identified as Gluconacetobacter sp. gel_SEA623-2 based on several morphological characteristics, biochemical tests, and 16S rRNA conducted. Culture conditions for bacterial cellulose production by SEA623-2 were screened in static trays. Conditions were extensively optimized by varying the kind of fruit juice, pH, sugar concentration, and temperature for maximum cellulose production. SEA623-2 has a high productive capacity in citrus processing medium, but not in other fruits. The optimal combination of the media constituents for bacterial cellulose production is as follows: 10% citrus juice, 10% sucrose, 1% acetic acid, and 1% ethanol at 30 °C, pH 3.5. Bacterial cellulose produced by SEA623-2 has soft physical properties, high tensile strength, and high water retention value. The cellulose produced by the selected bacteria is suitable as a cosmetic and medical material.  相似文献   

20.
Wang A  Sun D  Cao G  Wang H  Ren N  Wu WM  Logan BE 《Bioresource technology》2011,102(5):4137-4143
Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs (each 25 mL) connected in series to an MEC (72 mL) produced a maximum of 0.43 V using fermentation effluent as a feed, achieving a hydrogen production rate from the MEC of 0.48 m3 H2/m3/d (based on the MEC volume), and a yield of 33.2 mmol H2/g COD removed in the MEC. The overall hydrogen production for the integrated system (fermentation, MFC and MEC) was increased by 41% compared with fermentation alone to 14.3 mmol H2/g cellulose, with a total hydrogen production rate of 0.24 m3 H2/m3/d and an overall energy recovery efficiency of 23% (based on cellulose removed) without the need for any external electrical energy input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号