首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oocytes enucleated at the second metaphase stage (MII) are often used as recipient cytoplasts for nuclear transfer. The oocyte's nuclear material has been traditionally removed blindly by aspirating the first polar body (Pb1) along with a portion of the cytoplasm. However, the Pb1-guided enucleation method is unreliable because the position of the Pb1 is variable. A previous study showed that pretreatment of mouse oocytes with 3% (0.09 M) sucrose allowed visualization of the metaphase spindle and chromosomes under standard light microscopy and led to a 100% enucleation rate. The same sucrose treatment, however, did not produce the same effect in bovine oocytes. In this study, we increased the concentration of sucrose to 0.3-0.9 M in PBS containing 20% fetal bovine serum (SPF) and found that the majority of the treated bovine oocytes (75%-86%) formed a small transparent bud into the perivitelline space, as compared with the 0.1 M sucrose (6%) or the no sucrose (0%) control groups. Staining of DNA with Hoechst 33342 revealed that these projections coincided with the position of the metaphase chromosomes in 100% of sucrose-treated oocytes, whereas only 31% of oocytes showed alignment of the position of Pb1 with their nuclear materials. Furthermore, 95% of oocytes treated in 0.3 M SPF were successfully enucleated by removing a small amount of cytoplasm adjacent to the projection. This is a significantly higher enucleation rate than that obtained by conventional Pb1-guided enucleation, even when a larger amount of cytoplasm was removed. For nuclear transfer, the enucleated oocytes treated with sucrose did not differ from the control oocytes in rates of fusion, cleavage, or development to blastocysts, or in the average cell numbers in blastocysts. This study demonstrated that 0.3 M sucrose treatment of bovine oocytes facilitates the localization of metaphase chromosomes under normal light microscopy and hence increases enucleation efficiency without compromising the in vitro development potential of cloned embryos by nuclear transfer.  相似文献   

2.
Manipulations of DNA and cellular structures are essential for the propagation of genetically identical animals by nuclear transfer. However, none of the steps have been optimized yet. This study reports a protocol that improves live dynamic imaging of the unfertilized bovine oocyte's meiotic spindle microtubules with microinjected polymerization-competent X-rhodamine-tubulin and/or with vital long-wavelength excited DNA fluorochrome Sybr14 so that the maternal chromosomes can be verifiably removed to make enucleated eggs the starting point for cloning. Suitability of the new fluorochromes was compared to the conventional UV excitable Hoechst 33342 fluorochrome. Enucleation removed the smallest amount of cytoplasm (4-7%) and was 100% efficient only when performed under continuous fluorescence, i.e., longer fluorescence exposure. This was in part due to the finding that the second metaphase spindle is frequently displaced (60.7 +/- 10%) from its previously assumed location subjacent to the first polar body. Removal of as much as 24 +/- 3% of the oocyte cytoplasm underneath the polar body, in the absence of fluorochromes, often resulted in enucleation failure (36 +/- 6%). When labeled oocytes were exposed to fluorescence and later activated, development to the blastocyst stage was lowest in the group labeled with Hoechst 33342 (3%), when compared to Sybr14 (19%), rhodamine-tubulin (23%), or unlabeled oocytes (37%). This suggests that longer wavelength fluorochromes can be employed for live visualization of metaphase spindle components, verification of their complete removal during enucleation, and avoidance of the confusion between artifactual parthenogenesis versus "cloning" success, without compromising the oocyte's developmental potential after activation.  相似文献   

3.
Abnormal oocyte spindle is frequently associated with the infertility of aged women. Directly manipulating the metaphase I (MI) spindle may be a feasible method to overcome this kind of problem. Here, we report that the MI meiotic spindle can be removed from MI mouse oocytes and will autonomously divide into two daughter cells with the same size, morphology and an equal number of chromosomes after culture for 5 h in maturation medium. The division rate of the MI spindle reached 56% after 10-15 h of culture. After transferring the MI meiotic spindle into synchronous ooplasm by electrofusion, about 61% of the reconstructed oocytes continued to complete the first meiosis and extruded a normal first polar body. The matured reconstructed oocytes can also be fertilised. Approximately 50% of the 2-cell embryos developed to the morula stage after in vitro culture.  相似文献   

4.
Polar body formation in oocytes is an extreme form of asymmetric cell division, but what regulates the asymmetric spindle positioning and cytokinesis is poorly understood. During mouse oocyte maturation, the metaphase I spindle forms at the center but then moves to the cortex prior to anaphase I and first polar body emission. We show here that treating denuded mouse oocytes with brefeldin A, an inhibitor of Golgi-based membrane fusion, abolished the asymmetric positioning of the metaphase I spindle and resulted in the formation of two half-size metaphase II eggs, instead of a full-sized egg and a polar body. The normal metaphase II spindle is similarly asymmetrically positioned in the mature egg, where the spindle lies with its axis parallel to the cortex but becomes perpendicular before anaphase II and emission of the second polar body. When ovulated eggs were activated with strontium in the presence of brefeldin A, the metaphase II spindle failed to assume perpendicular position, and the chromosomes separated without the extrusion of the second polar body. Remarkably, symmetric cytokinesis began following a 3 h delay, forming two half-size eggs each containing a pronucleus. BFA-sensitive intracellular vesicular transport is therefore required for spindle positioning in both MI and MII.  相似文献   

5.
The objective of this study was to investigate the possible effect of demecolcine, a microtubule-disrupting reagent, on induced enucleation (IE) of sheep meiotically maturing oocytes. Immunofluorescent staining with anti-tubulin antibodies was used to examine the spindle status of the oocytes. When the oocytes with intact germinal vesicles (GV) were cultured in the medium containing various concentrations of demecolcine (0.01 to 0.4 microg.mL-1) for 20 to 22 h, the spindle microtubule organization and first polar body (PB1) extrusion were inhibited by demecolcine in a dose-dependent manner. The highest IE rate (58.1%) was from the treatment with 0.04 microg.mL-1 demecolcine. Demecolcine treatment applied after germinal vesicle breakdown (GVBD) or at metaphase (M) yielded a PB1 extrusion rate and IE efficiency similar to the treatment applied at the onset of maturation. Analysis by immunofluorescence showed that both nonspindle microtubules and spindle microtubules were significantly disorganized by demecolcine. Combination treatment with demecolcine and cycloheximide (CHX) or 6-dimethylaminopurine (6-DMAP) led to single pronuclear formation rather than PB1 extrusion. When demecolcine-treated oocytes were transferred into demecolcine-free medium, the ability to extrude PB1 was quickly restored and a 72.1% IE rate was obtained following such treatment. These results demonstrate that demecolcine can be used as a potential reagent for induced enucleation of sheep meiotically maturing oocytes and may greatly facilitate research in nuclear transfer.  相似文献   

6.
The meiotic spindle is crucial for normal chromosome alignment and separation of maternal chromosomes during meiosis. Conventional methods to image spindles rely on fixation and transmission electron microscope or immunofluorescence staining and fluorescence microscope, so they provide limited value to studies of spindle dynamics and human clinical in vitro fertilization. A new orientation-independent polarized light microscope, the LC Polscope, was used to examine the bi-refringent spindles in living mammalian oocytes. It was found that spindles could be imaged with the Polscope in living oocytes in all mammals so far examined, including hamster, mouse, cattle, human, and rat. The first polar body did not accurately predict the spindle location in most metaphase II oocytes. Intracytoplasmic sperm injection (ICSI) could be performed by monitoring spindle position. Studies in humans indicated that, aftr ICSI, higher fertilization and embryonic developmental rates could be achieved in oocytes with than without bi-refringent spindles. Because spindles in most mammalian oocytes are extremely sensitive to slight changes in temperature, maintenance of temperature at 37 degrees C is crucial for normal spindle function. As chromosomes#10; are usually associated with microtubule fibers in the spindles, the position of chromosomes could be indirectly located by imaging spindles. Removing spindles under the Polscope can achieve an enucleation#10; efficiency rate of 100% in mouse oocytes. The Polscope can also be used to examine the spindle dynamics, detect spindle morphology, predict chromosome misalignment, and perform spindle transfer.  相似文献   

7.
The kinetics of spindle and chromosomes during bovine oocyte meiosis from meiosis I to meiosis III is described. The results of this study showed that (1) oocytes began to extrude the first polar body (Pb1) at the early anaphase I stage and the Pb1 totally separated from the mother cell only when oocytes reach the MII stage; (2) the morphology of the spindle changed from barrel-shaped at the metaphase stage to cylinder-shaped at early anaphase, and then to a thin, long triangle-shaped cone at late anaphase and telophase stages; (3) chromosome morphology went from an individual visible stage at metaphase to a less defined chromatin state during anaphase and telophase stages, and then back to visible individual chromosomes at the next metaphase; (4) chromatin that connected with the floor of the cone became the polar bodies and expelled, and almost all of the microtubules (MTs) and microfilaments (MFs) composing the spindles moved towards and contributed to the polar bodies; and (5) the size of the metaphase I (MI) spindle was larger than the metaphase II (MII) and metaphase III (MIII) spindles. The MII spindle, however, is more barrel-shaped than the MI spindle. This study suggests that spindle MTs and MFs during bovine oocyte meiosis are asymmetrically divided into the polar bodies.  相似文献   

8.
The process of resumption of the first meiotic division (RMI) in mammalian oocytes includes germinal vesicle breakdown (GVBD), spindle formation during first metaphase (MI), segregation of homologous chromosomes, extrusion of the first polar body (PBI) and an arrest at metaphase of the second meiotic division (MII). Previous studies suggest a role for Fyn, a non-receptor Src family tyrosine kinase, in the exit from MII arrest. In the current study we characterized the involvement of Fyn in RMI. Western blot analysis demonstrated a significant, proteasome independent, degradation of Fyn during GVBD. Immunostaining of fixed oocytes and confocal imaging of live oocytes microinjected with Fyn complementary RNA (cRNA) demonstrated Fyn localization to the oocyte cortex and to the spindle poles. Fyn was recruited during telophase to the cortical area surrounding the midzone of the spindle and was then translocated to the contractile ring during extrusion of PBI. GVBD, exit from MI and PBI extrusion were inhibited in oocytes exposed to the chemical inhibitor SU6656 or microinjected with dominant negative Fyn cRNA. None of the microinjected oocytes showed misaligned or lagging chromosomes during chromosomes segregation and the spindle migration and anchoring were not affected. However, the extruded PBI was of large size. Altogether, a role for Fyn in regulating several key pathways during the first meiotic division in mammalian oocytes is suggested, particularly at the GV and metaphase checkpoints and in signaling the ingression of the cleavage furrow.  相似文献   

9.
华松  张志鹏  张驰  张涌 《遗传学报》2007,34(6):491-496
为了提高传统的盲吸法牛体细胞核移植去核效率,将0.5mL离心管底部截掉,在截口处蒙上一层400目的细胞筛网,再与1 mL的离心管套在一起。实验1,将成熟的卵母细胞置于改造过的离心管内膜上,分别以1,000r/min、2,000r/min及3,000r/min离心10min,Hoechst 33342染色后,在荧光显微镜下计算第一极体与染色体的位置关系及去核效率;实验2,将卵母细胞以2,000r/min离心后去核做受体,颗粒细胞做供体进行核移植,检查重构胚胎的早期发育情况。结果表明:以2,000 r/min将卵母细胞离心10min后,有86.6%卵母细胞的极体与染色体之间夹角在20°以内,此时去核效率最高(87.4%);将卵母细胞离心后,对随后的重构胚发育无影响。因此,采用离心辅助去核的方法可以显著提高牛卵母细胞的去核效率。  相似文献   

10.
Studies were carried out to find out the optimal parameters of enucleation and electroactivation ofrecipient rabbit oocyte for successful nuclear transfer,using the fluorescent stain,DAPI(4-6-diamidino-2-phenylindole),and electroactivation.According to the position of metaphasechromosomes in relation to the first polar body,the oocytes were classified into three types:1.thosewith chromosomes juxtaposed to the polar body;2.those with chromosomes in its adjacency; and3.those with chromosomes further removed.The relative proportions of each type appeared to varywith the time of maturation at which the oocytes were collected,with those of the later typesincreasing as the maturation process went further on.In addition,in-vitro cultivation ofelectroactivated oocytes gave the best results with oocytes that matured in-vito after injection ofovulating hormones(LH or HCG)and oocytes that were cultivated in-vitro for 17-19 hours.As aresult,it is recommended that oocytes be selected from those collected from the oviducts 13-15 hoursafter injection of LH or HCG,and electrofusion and electroactivation be done aftermicromanipulation and in-vito cultivation for 2-4 hours.By so doing,it is expected to achieve thehighest enucleation rate of oocytes and the highest fusion rate,the highest activation rate and thehighest development rate of the restructured embryos.  相似文献   

11.
Mitogen-activated protein kinase (MAPK) has been reported to be involved in oocyte maturation in all animals so far examined. In the present study we investigate the expression and localisation of active phosphorylated MAPKs (p44ERK1/p42ERK2) during maturation of pig oocytes. In immunoblot analysis using anti-p44ERK1 antibody which recognised both active and inactive forms of p44ERK1 and p42ERK2, we confirmed that MAPKs were phosphorylated around the time of germinal vesicle breakdown (GVBD) and the active phosphorylated MAPKs (pMAKs) were maintained until metaphase II, as has been reported. On immunofluorescent confocal microscopy using anti-pMAPK antibody which recognised only phosphorylated forms of MAPKs, pMAPK was localised at the spindle poles in pig mitotic cells. On the other hand, in pig oocytes, no signal was detected during GV stage. After GVBD, the area around condensed chromosomes was preferentially stained at metaphase I although whole cytoplasm was faintly stained. At early anaphase I, the polar regions of the meiotic spindle were prominently stained. However, during the progression of anaphase I and telophase I pMAPK was detected at the mid-zone of the elongated spindle, gradually becoming concentrated at the centre. Finally, at the time of emission of the first polar body, pMAPK was detected as a ring-like structure between the condensed chromosomes and the first polar body, and the staining was maintained even after the metaphase II spindle was formed. The inhibition of MAPK activity with the MAPK kinase inhibitor U0126 during the meiosis I/meiosis II transition suppressed chromosome separation, first polar body emission and formation of the metaphase II spindle. From these results, we propose that the spindle-associated pMAPKs play an important role in the events occurring during the meiosis I/meiosis II transition, such as chromosome separation, spindle elongation and cleavage furrow formation in pig oocytes.  相似文献   

12.
To improve the enucleation rate in newly matured bovine oocytes, we investigated the position of cytoplasmic chromatin in relation to the polar body and the consequent enucleation efficiency before and after sequential activation with calcium ionophore A23187 and cycloheximide. Oocytes aspirated from the follicles of slaughterhouse-collected ovaries were cultured for 18 to 20 h. With Hoechst staining, only 40.7% of the chromatin material was found adjacent to the first polar body in metaphase II oocytes, while 100% was located adjacent to the second polar body in oocytes after the activation. Enucleation trials after activation showed a higher enucleation rate (91.5%) than that before activation (59.9%). The following experiment determined the effect of using both kinds of cytoplast on the in vitro development of nuclear transfer embryos. Blastomeres of the 32-cell-stage in vitro-produced embryos were transferred, fused to the activated cytoplasts and cultured in vitro. No significant difference was detected in fusion, cleavage or development to blastocysts obtained 7 d (174 h) post fusion. In conclusion, this study showed that young in vitro-matured bovine oocytes sequentially activated with calcium ionophore and cycloheximide have cytoplasmic chromatin material adjacent to the second polar body, leading to a high enucleation rate.  相似文献   

13.
Cloning of mammalian oocytes requires that the recipient oocyte is enucleated to remove all genetic material associated with the chromosomes. The procedure currently used in most species requires careful micromanipulation of oocytes treated with cytochalasin B to prevent structural damage. Although functional, this procedure requires time and limits the number of oocytes available for cloning, and our ability to understand the mechanisms of nuclear reprogramming. Therefore, this study aimed at evaluating different procedures to enucleate large pools of oocytes in a time-efficient manner. Two different approaches were tested. The first approach involved centrifugation of zona-free oocytes through a percoll gradient to separate the portion containing the chromatin from the cytoplasmic portion. The second used etoposide to prevent chromatin segregation at first metaphase and resulting in the expulsion of all chromosomes in the polar body. Using the chemical approach an average enucleation rate of 39.4 +/- 7.5% was obtained, while the centrifugation approach resulted in an average enucleation rate of 66.9 +/- 6. In terms of time efficiency, the control manipulation method takes 0.11 min and the centrifugation took an average of 0.52 min per oocyte. The MPF activity at the end of procedure was estimated through the measurement of H1 activity and as expected, the etoposide-cycloheximide treated oocytes had lower H1 activity which was restored by further incubation in the maturation medium for 5 hr while the centrifugation gave a nonsignificant intermediary result. In conclusion, the results presented suggest that both the chemical and the mechanical methods are usable alternatives to micromanipulation of oocytes to generate a large number of chromosome free cytoplasm for biochemical analysis. Mol. Reprod. Dev. 67: 70-76, 2004.  相似文献   

14.
The newly developed Pol-Scope allows imaging of spindle retardance, which is an optical property of organized macromolecular structures that can be observed in living cells without fixation or staining. Experiments were undertaken to examine changes in meiotic spindles during the initial stages of activation of living mouse oocytes using the Pol-Scope. Parthenogenetic activation of oocytes treated with calcium ionophore evoked a dynamic increase in meiotic spindle retardance, particularly of the midregion, before spindle rotation and second polar body extrusion. The pronounced increase in spindle retardance, which could, for the first time to our knowledge, be quantified in living oocytes, was maintained during polar body extrusion. Spindle retardance of newly in vivo fertilized oocytes was significantly higher than that of ovulated, metaphase II oocytes. Pol-Scope imaging of fertilized oocytes did not affect subsequent development. These results establish that increased spindle retardance precedes polar body extrusion and pronuclear formation. The increased birefringence in the spindle provides an early indicator of oocyte activation. Thus, noninvasive, quantitative imaging of the onset of activation in living oocytes might improve the efficiency of assisted fertilization and other embryo technologies.  相似文献   

15.
Kinetochores may perform several functions at mitosis and meiosis including: (a) directing anaphase chromosome separation, (b) regulating prometaphase alignment of the chromosomes at the spindle equator (congression), and/or (c) capturing and stabilizing microtubules. To explore these functions in vivo, autoimmune sera against the centromere/kinetochore complex are microinjected into mouse oocytes during specific phases of first or second meiosis, or first mitosis. Serum E.K. crossreacts with an 80-kD protein in mouse cells and detects the centromere/kinetochore complex in permeabilized cells or when microinjected into living oocytes. Chromosome separation at anaphase is not blocked when these antibodies are microinjected into unfertilized oocytes naturally arrested at second meiotic metaphase, into eggs at first mitotic metaphase, or into immature oocytes at first meiotic metaphase. Microtubule capture and spindle reformation occur normally in microinjected unfertilized oocytes recovering from cold or microtubule disrupting drugs; the chromosomes segregate correctly after parthenogenetic activation. Prometaphase congression is dramatically influenced when antikinetochore/centromere antibodies are introduced during interphase or in prometaphase-stage meiotic or mitotic eggs. At metaphase, these oocytes have unaligned chromosomes scattered throughout the spindle with several remaining at the poles; anaphase is aberrant and, after division, karyomeres are found in the polar body and oocyte or daughter blastomeres. Neither nonimmune sera, diffuse scleroderma sera, nor sham microinjections affect either meiosis or mitosis. These results suggest that antikinetochore/centromere antibodies produced by CREST patients interfere with chromosome congression at prometaphase in vivo.  相似文献   

16.
The microfilament inhibitor cytochalasin D inhibits extrusion of the first polar body when present during the first meiotic division of mouse oocytes; however, it does not interfere with anaphase movement of chromosomes, and thus induces the formation of tetraploid oocytes. After the separation of chromosomes in anaphase, two spindles start to assemble. However, they merge rapidly and a single meiotic spindle forms. During the transition between metaphase I and metaphase II, in the presence of cytochalasin D, a drop in histone kinase activity takes place demonstrating a transitional decrease in the activity of the maturation promoting factor. These oocytes can be activated parthenogenetically a few hours after washing out the inhibitor. After completion of the second meiotic division and extrusion of a polar body, they contain a diploid number of chromosomes. They are genetically identical to each other and to their mother. Such eggs develop to the blastocyst stage and can implant in the uteri of foster mothers. Most of these fetuses die before the 9th day of gestation, as do diploid control fetuses treated with cytochalasin D during the second meiotic division. The heterozygous state of the experimental embryos obtained after activation of eggs recovered from heterozygous females and treated with cytochalasin D during the first meiotic division was confirmed using a glucose-phosphate isomerase assay. This technique allows the production of genetic clones of parthenogenetic embryos by simple means.  相似文献   

17.
A large population (62-90%) of pig follicular oocytes can mature to metaphase II after culture for 48 h. However, a proportion (6-22%) remain in an immature stage at metaphase I (metaphase I-arrested). The main objective of this study was to determine whether the cytoplasm of metaphase I-arrested pig oocytes is capable of being activated by sperm penetration or parthenogenetic stimulation. After culture for 48 h, oocytes without a polar body (73% were shown to be at metaphase I after staining) and those with a polar body (94% were at metaphase II) were fertilized in vitro. A total of 69% and 62% of the oocytes were activated to form a female pronucleus, respectively, and the rate of polar body extrusion induced by fertilization in the activated oocytes was 90% (the first polar body) and 95% (the second polar body), respectively. When oocytes without and with a polar body were stimulated with an electric pulse, 53% and 81% of the oocytes were activated, respectively. The rate of polar body extrusion in the activated oocytes was 73% (the first polar body) and 79% (the second polar body), respectively. In contrast, young metaphase I oocytes cultured for 24 h had low (6%) or zero activation rate after in vitro fertilization or electric pulse stimulation. However, about one-third of the young metaphase I oocytes penetrated by spermatozoa after in vitro fertilization responded to electric pulse 12 h after insemination, and almost all (93%) were activated when they were stimulated 24 h after insemination. Patterns of polypeptide synthesis and histone H1 kinase activity were similar in metaphase I-arrested and metaphase II oocytes, and were characterized by increase in a 25 kDa polypeptide and by decrease in kinase activity. Although the first step of meiotic division is impaired, these results indicate that metaphase I-arrested oocytes are mature cytoplasmically.  相似文献   

18.
Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage.  相似文献   

19.
The natural clone loach produces unreduced eggs genetically identical to somatic cells of the mother fish and such diploid eggs normally develop as a clone without genetic contribution of sperm. Following the identification of clonal nature and diploidy of eggs, we conducted cytological studies to determine the mechanisms responsible for this unusual oogenesis. Cytolological observation of full-grown oocytes cultured in vitro revealed that oocytes of both the clone and the control loach underwent two successive meiotic divisions: formation of a bipolar spindle and metaphase in meiosis I and equal segregation of chromosomes, extrusion of the first polar body and the appearance of metaphase of meiosis II. However, spindle size of the clone was larger than that of the control. Bivalent chromosome number of germinal vesicle of oocytes was 25 in the control diploid, whereas 50 in the clone. The results suggest that chromosomes are duplicated by mitosis without cytokinesis before meiosis, i.e. premeiotic endomitosis and then oocytes differentiated from tetraploid oogonia undergo a quasinormal meiosis followed by two successive divisions to produce diploid eggs.  相似文献   

20.
Two starfish oocytes with a 12 min time difference in the maturation phase were fused together with electric pulses to make a heteroplasmic conjugate. The starfish used were Asterina pectinifera. The emergence of the first meiotic spindle and the extrusion of the polar bodies in the conjugate were timed. Under polarization microscopy two meiotic spindles emerged with a time difference of 10-11 min, which is close to the time difference in the maturation phase between the original oocytes before fusion. In contrast, subsequent formation of the first two polar bodies occurred successively with a short time lag of 1-3 min between them. Times for the formation of both polar bodies were midway between the anticipated times for polar body formation in respective non-fused control oocytes. Thus, in one nucleus the meiotic division was delayed, while in another nucleus it was accelerated, in a single heteroplasmic conjugate. These two sets of observations indicate the presence of a certain control system that regulates progression of the cell cycle at a point during the period from the entry into metaphase through to late anaphase of meiosis I in starfish oocytes. This type of cell cycle control in starfish oocytes is obviously distinct from the currently accepted view of the cell cycle control by the spindle assembly checkpoint that monitors unattached kinetochores of mitotic chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号