首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The control of microtubule and actin-mediated events that direct the physical arrangement and separation of chromosomes during meiosis is critical since failure to maintain chromosome organization can lead to germ cell aneuploidy. Our previous studies demonstrated a role for FYN tyrosine kinase in chromosome and spindle organization and in cortical polarity of the mature mammalian oocyte. In addition to Fyn, mammalian oocytes express the protein tyrosine kinase Fer at high levels relative to other tissues. The objective of the present study was to determine the function of this kinase in the oocyte. Feline encephalitis virus (FES)-related kinase (FER) protein was uniformly distributed in the ooplasm of small oocytes, but became concentrated in the germinal vesicle (GV) during oocyte growth. After germinal vesicle breakdown (GVBD), FER associated with the metaphase-I (MI) and metaphase-II (MII) spindles. Suppression of Fer expression by siRNA knockdown in GV stage oocytes did not prevent activation of cyclin dependent kinase 1 activity or chromosome condensation during in vitro maturation, but did arrest oocytes prior to GVBD or during MI. The resultant phenotype displayed condensed chromosomes trapped in the GV, or condensed chromosomes poorly arranged in a metaphase plate but with an underdeveloped spindle microtubule structure or chromosomes compacted into a tight sphere. The results demonstrate that FER kinase plays a critical role in oocyte meiotic spindle microtubule dynamics and may have an additional function in GVBD.  相似文献   

2.
Checkpoint kinase 1 (Chk1) plays key roles in all currently defined cell cycle checkpoints, but its functions in mouse oocyte meiosis remain unclear. In this study, we report the expression, localization and functions of Chk1 in mouse oocyte meiosis. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages and localized to the spindle from pro-metaphase I (pro-MI) to MII stages in mouse oocytes. Chk1 depletion facilitated the G2/M transition while Chk1 overexpression inhibited the G2/M transition as indicated by germinal vesicle breakdown (GVBD), through regulation of Cdh1 and Cyclin B1. Chk1 depletion did not affect meiotic cell cycle progression after GVBD, but its overexpression after GVBD activated the spindle assembly checkpoint and prevented homologous chromosome segregation, thus arresting oocytes at pro-MI or metaphase I (MI) stages. These results suggest that Chk1 is indispensable for prophase I arrest and functions in G2/M checkpoint regulation in meiotic oocytes. Moreover, Chk1 overexpression affects meiotic spindle assembly checkpoint regulation and thus chromosome segregation.  相似文献   

3.
Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage.  相似文献   

4.
PKCβI, a member of the classical protein kinase C family, plays key roles in regulating cell cycle transition. Here, we report the expression, localization and functions of PKCβI in mouse oocyte meiotic maturation. PKCβI and p-PKCβI (phosphor-PKCβI) were expressed from germinal vesicle (GV) stage to metaphase II (MII) stage. Confocal microscopy revealed that PKCβI was localized in the GV and evenly distributed in the cytoplasm after GV breakdown (GVBD), and it was concentrated at the midbody at telophase in meiotic oocytes. While, p-PKCβI was concentrated at the spindle poles at the metaphase stages and associated with midbody at telophase. Depletion of PKCβI by specific siRNA injection resulted in defective spindles, accompanied with spindle assembly checkpoint activation, metaphase I arrest and failure of first polar body (PB1) extrusion. Live cell imaging analysis also revealed that knockdown of PKCβI resulted in abnormal spindles, misaligned chromosomes, and meiotic arrest of oocytes arrest at the Pro-MI/MI stage. PKCβI depletion did not affect the G2/M transition, but its overexpression delayed the G2/M transition through regulating Cyclin B1 level and Cdc2 activity. Our findings reveal that PKCβI is a critical regulator of meiotic cell cycle progression in oocytes.

Abbreviations: PKC, protein kinase C; COC, cumulus-oocyte complexes; GV, germinal vesicle; GVBD, germinal vesicle breakdown; Pro-MI, first pro-metaphase; MI, first metaphase; Tel I, telophase I; MII, second metaphase; PB1, first polar body; SAC, spindle assembly checkpoint  相似文献   


5.
Cell division cycle protein, CDC6, is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from pro-metaphase I (MI) to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (germinal vesicle breakdown [GVBD]) through regulation of Cdh1 and cyclin B1 expression and CDK1 (CDC2) phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation, and spindle assembly checkpoint (SAC) activation, leading to significant pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.  相似文献   

6.
Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage.  相似文献   

7.
Haspin-catalyzed histone H3 threonine 3 (Thr3) phosphorylation facilitates chromosomal passenger complex (CPC) docking at centromeres, regulating indirectly chromosome behavior during somatic mitosis. It is not fully known about the expression and function of H3 with phosphorylated Thr3 (H3T3-P) during meiosis in oocytes. In this study, we investigated the expression and sub-cellular distribution of H3T3-P, as well as its function in mouse oocytes during meiotic division. Western blot analysis revealed that H3T3-P expression was only detected after germinal vesicle breakdown (GVBD), and gradually increased to peak level at metaphase I (MI), but sharply decreased at metaphase II (MII). Immunofluorescence showed H3T3-P was only brightly labeled on chromosomes after GVBD, with relatively high concentration across the whole chromosome axis from pro-metaphase I (pro-MI) to MI. Specially, H3T3-P distribution was exclusively limited to the local space between sister centromeres at MII stage. Haspin inhibitor, 5-iodotubercidin (5-ITu), dose- and time-dependently blocked H3T3-P expression in mouse oocytes. H3T3-P inhibition delayed the resumption of meiosis (GVBD) and chromatin condensation. Moreover, the loss of H3T3-P speeded up the meiotic transition to MII of pro-MI oocytes in spite of the presence of non-aligned chromosomes, even reversed MI-arrest induced with Nocodazole. The inhibition of H3T3-P expression distinguishably damaged MAD1 recruitment on centromeres, which indicates the spindle assembly checkpoint was impaired in function, logically explaining the premature onset of anaphase I. Therefore, Haspin-catalyzed histone H3 phosphorylation is essential for chromatin condensation and the following timely transition from meiosis I to meiosis II in mouse oocytes during meiotic division.  相似文献   

8.
Vertebrate oocytes arrest in the second metaphase of meiosis (metaphase II [MII]) by an activity called cytostatic factor (CSF), with aligned chromosomes and stable spindles. Segregation of chromosomes occurs after fertilization. The Mos/.../MAPK (mitogen-activated protein kinases) pathway mediates this MII arrest. Using a two-hybrid screen, we identified a new MAPK partner from a mouse oocyte cDNA library. This protein is unstable during the first meiotic division and accumulates only in MII, where it localizes to the spindle. It is a substrate of the Mos/.../MAPK pathway. The depletion of endogenous RNA coding for this protein by three different means (antisense RNA, double-stranded [ds] RNA, or morpholino oligonucleotides) induces severe spindle defects specific to MII oocytes. Overexpressing the protein from an RNA not targeted by the morpholino rescues spindle destabilization. However, dsRNA has no effect on the first two mitotic divisions. We therefore have discovered a new MAPK substrate involved in maintaining spindle integrity during the CSF arrest of mouse oocytes, called MISS (for MAP kinase-interacting and spindle-stabilizing protein).  相似文献   

9.
This report examines in detail the metabolism of the cyclin protein B1 during meiotic maturation and following the activation of mature mouse oocytes using immunoprecipitation of the radiolabelled protein. The net synthesis of cyclin B increases progressively during meiotic maturation, reaching its maximum levels at least 1 h before oocytes exit into metaphase of meiosis II (MII). This increase correlates with the rise in cdc2 kinase activity reported previously and suggests an association between the length of the first meiotic M phase (MI) and the net synthesis of cyclin B, that seems to regulate the time required for the cdc2 kinase to reach its maximum activity. Moreover, no marked degradation of cyclin B was observed before the MI to MII transition and that which occurs does so independently of the presence of microtubules, which are essential for cyclin degradation during metaphase II arrest and exit of oocytes into interphase of the first mitotic cell cycle. Cyclin B is degraded rapidly during the transitions MI to MII, MII to the first mitotic interphase and MII to an abortive third metaphase state (MIII). However, whilst its degradation was incomplete during the MI to MII transition, virtually no cyclin B protein was detected following both the MII to interphase and MII to MIII transitions. Thus, the decision of oocytes to exit into MIII, or interphase is not controlled at the level of cyclin B degradation. Lastly, in aging, non-activated oocytes, the net synthesis of cyclin B declines. Whereas, in activated eggs cultured in parallel although the rate of net synthesis declines initially, it is effectively ‘rescued’ being two-fold greater than in non-activated oocytes of an equivalent age. This gradual fall in the net synthesis of cyclin B observed in aging oocytes may contribute to the increasing ease with which they become activated, compared to recently ovulated oocytes.  相似文献   

10.
The Aurora kinase family has been involved both in vivo and in vitro in the stability of the metaphase plate and chromosome segregation. However, to date only one member of this family, the protein kinase Aurora B, has been implicated in the regulation of meiotic division in Caenorhabditis elegans. In this species, disruption of Aurora B results in the failure of polar body extrusion. To investigate whether Aurora A is also required in meiosis, we microinjected highly specific alpha-Aurora A antibodies in Xenopus oocytes. We demonstrated that microinjected oocytes fail to extrude the first polar body and are arrested with condensed chromosomes on a typical metaphase I plate, which has not performed its normal 90 degrees rotation. We additionally found that, although the failure of first polar body extrusion observed in alpha-Aurora A-microinjected oocytes is likely mediated by Eg5, the impairment of the metaphase plate rotation does not involve this kinesin-like protein. Surprisingly, although chromosomes remain condensed at a metaphase I stage in alpha-Aurora A-microinjected oocytes, the cytoplasmic cell cycle events progress normally through meiosis until metaphase II arrest. Moreover, these oocytes are able to undergo parthenogenetic activation. We conclude that Aurora A and Eg5 are involved in meiosis I to meiosis II transition in Xenopus oocytes.  相似文献   

11.
Activation of p38 MAPK during porcine oocyte maturation   总被引:1,自引:0,他引:1  
  相似文献   

12.
To determine whether the nuclei of early growing stage porcine oocytes can mature to the MII stage, we examined meiotic competence of nuclei that had been fused with enucleated GV oocytes using the nuclear transfer method. In vitro matured oocytes were enucleated and then fused with early growing oocytes (30-40 μm in diameter) from 5 to 7-wk-old piglets using the hemagglutinating virus of Japan (HVJ). Reconstructed oocytes were cultured for 24 h to the MII stage. Although these oocytes extruded the first polar body, they did not contain normal haploid chromosomes, and the spindles were misaligned or absent at the metaphase II (MII) stage. Furthermore, maturation promoting factor (MPF) activity levels were low in oocytes reconstructed with early growing oocytes at metaphase I (MI) and MII. In contrast, mitogen-activated protein kinase (MAPK) activity was detected between the MI and MII stages, although at slightly lower levels. In conclusion, the nuclei of early growing oocytes did not accomplish normal meiotic division in matured oocytes due to misaligned or absent spindle formation.  相似文献   

13.
Checkpoint 1 (Chk1), as an important member of DNA replication checkpoint and DNA damage response, has an important role during the G2/M stage of mitosis. In this study, we used porcine oocyte as a model to investigate the function of Chk1 during porcine oocyte maturation. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages, mainly localized in the cytoplasm at GV stage and moved to the spindle after germinal vesicle breakdown (GVBD). Chk1 depletion not only induced oocytes to be arrested at MI stage with abnormal chromosomes arrangement, but also inhibited the degradation of Cyclin B1 and decreased the expression of Mitotic Arrest Deficient 2-Like 1 (Mad2L1), one of spindle assembly checkpoint (SAC) proteins, and cadherin 1 (Cdh1), one of coactivation for anaphase-promoting complex/cyclosome (APC/C). Moreover, Chk1 overexpression delayed GVBD. These results demonstrated that Chk1 facilitated the timely degradation of Cyclin B1 at anaphase I (AI) and maintained the expression of Mad2L1 and Cdh1, which ensured that all chromosomes were accurately located in a line, and then oocytes passed metaphase I (MI) and AI and exited from the first meiotic division successfully. In addition, we proved that Chk1 had not function on GVBD of porcine oocytes, which suggested that maturation of porcine oocytes did not need the DNA damage checkpoint, which was different from the mouse oocyte maturation.  相似文献   

14.
Kinetochores may perform several functions at mitosis and meiosis including: (a) directing anaphase chromosome separation, (b) regulating prometaphase alignment of the chromosomes at the spindle equator (congression), and/or (c) capturing and stabilizing microtubules. To explore these functions in vivo, autoimmune sera against the centromere/kinetochore complex are microinjected into mouse oocytes during specific phases of first or second meiosis, or first mitosis. Serum E.K. crossreacts with an 80-kD protein in mouse cells and detects the centromere/kinetochore complex in permeabilized cells or when microinjected into living oocytes. Chromosome separation at anaphase is not blocked when these antibodies are microinjected into unfertilized oocytes naturally arrested at second meiotic metaphase, into eggs at first mitotic metaphase, or into immature oocytes at first meiotic metaphase. Microtubule capture and spindle reformation occur normally in microinjected unfertilized oocytes recovering from cold or microtubule disrupting drugs; the chromosomes segregate correctly after parthenogenetic activation. Prometaphase congression is dramatically influenced when antikinetochore/centromere antibodies are introduced during interphase or in prometaphase-stage meiotic or mitotic eggs. At metaphase, these oocytes have unaligned chromosomes scattered throughout the spindle with several remaining at the poles; anaphase is aberrant and, after division, karyomeres are found in the polar body and oocyte or daughter blastomeres. Neither nonimmune sera, diffuse scleroderma sera, nor sham microinjections affect either meiosis or mitosis. These results suggest that antikinetochore/centromere antibodies produced by CREST patients interfere with chromosome congression at prometaphase in vivo.  相似文献   

15.
W Liu  J Yin  G Zhao  Y Yun  S Wu  KT Jones  A Lei 《Theriogenology》2012,78(6):1171-1181
During mammalian oocyte maturation, two consecutive meiotic divisions are required to form a haploid gamete. For each meiotic division, oocytes must transfer from metaphase to anaphase, but maturation promoting factor (cyclin-dependent kinase 1/cyclin B1) activity would keep the oocytes at metaphase. Therefore, inactivation of maturation promoting factor is needed to finish the transition and complete both these divisions; this is provided through anaphase-promoting complex/cyclosome-dependent degradation of cyclin B1. The objective of this study was to examine meiotic divisions in bovine oocytes after expression of a full length cyclin B1 and a nondegradable N-terminal 87 amino acid deletion, coupled with the fluorochrome Venus, by microinjecting their complementary RNA (cRNA). Overexpression of full-length cyclin B1-Venus inhibited homologue disjunction and first polar body formation in maturing oocytes (control 70% vs. overexpression 16%; P < 0.05). However at the same levels of expression, it did not block second meiotic metaphase and cleavage of eggs after parthenogenetic activation (control: 82% pronuclei and 79% cleaved; overexpression: 91% pronuclei and 89% cleaved). The full length cyclin B1 and a nondegradable N-terminal 87 amino acid deletion caused metaphase arrest in both meiotic divisions, whereas degradation of securin was unaffected. Roscovitine, a potent cyclin-dependent kinase 1 (CDK1) inhibitor, overcame this metaphase arrest in maturing oocytes at 140 μM, but higher doses (200 μM) were needed to overcome arrest in eggs. In conclusion, because metaphase I (MI) blocked by nondegradable cyclin B1 was distinct from metaphase II (MII) in their different sensitivities to trigger CDK1 inactivation, we concluded that mechanisms of MI arrest differed from MII arrest.  相似文献   

16.
In female mice, despite the presence of slight DNA double-strand breaks (DSBs), fully grown oocytes are able to undergo meiosis resumption as indicated by germinal vesicle breakdown (GVBD); however, severe DNA DSBs do reduce and delay entry into M phase through activation of the DNA damage checkpoint. But little is known about the effect of severe DNA DSBs on the spindle assembly checkpoint (SAC) during oocyte maturation. We showed that nearly no first polar body (PB1) was extruded at 12 h of in vitro maturation (IVM) in severe DNA DSBs oocytes, and the limited number of oocytes with PB1 were actually at telophase. However, about 60% of the severe DNA DSBs oocytes which underwent GVBD at 2 h of IVM released a PB1 at 18 h of IVM and these oocytes did reach the second metaphase (MII) stage. Chromosome spread at MI and MII stages showed that chromosomes fragmented after GVBD in severe DNA DSBs oocytes. The delayed PB1 extrusion was due to the disrupted attachment of microtubules to kinetochores and activation of the SAC. At the same time, misaligned chromosome fragments became obvious at the first metaphase (MI) in severe DNA DSBs oocytes. These data implied that the inactivation of SAC during the metaphase-anaphase transition of first meiosis was independent of chromosome integrity. Next, we induced DNA DSBs in vivo, and found that the number of superovulated oocytes per mouse was significantly reduced; moreover, this treatment increased the percentage of apoptotic oocytes. These results suggest that DNA DSBs oocytes undergo apoptosis in vivo.  相似文献   

17.
Mouse oocytes at different stages of maturation were fused together and the ensuing cell cycle events were analyzed with the objective of identifying checkpoints in meiosis. Fusion of maturing oocytes just undergoing germinal vesicle breakdown (GVBD) induces PCC (premature chromosome condensation) but no spindle formation in immature (GV) partner oocytes. On the other hand, fusion of metaphase I (MI) oocytes containing spindles to GV oocytes induces both PCC and spindle formation in the immature partner. Thus, while molecules required for condensation are present throughout metaphase, those involved in spindle formation are absent in early M-phase. Oocytes cultured for 6 h—early metaphase I (i.e., 2 h before the onset of anaphase I)—and then fused to anaphase-telophase I (A-TI) fusion partners block meiotic progression in the more advanced oocytes and induce chromatin dispersal on the spindle. By contrast, oocytes cultured for 8 h (late MI) before fusion to A-TI partners are driven into anaphase by signals from the more advanced oocytes and thereafter advance in synchrony to telophase I. When early (10 h) or late (12 h) metaphase II oocytes were fused to A-TI partners the signals generated from early MII oocytes block the anaphase to telophase I transition and induce a dispersal of A-TI chromosomes along the spindle. On the other hand, late MII oocytes respond to A-TI signals by exiting from the MII block and undergoing the A-TII transition. Moreover, the oocytes in late MI are not arrested in this stage and progress without any delay through A-TI to MII when fused to metaphase II partners. The signals from the less-developed partner force the MII oocyte through A-TII to MIII. In total, these studies demonstrate that the metaphase period is divided into at least three distinct phases and that a checkpoint in late metaphase controls the progress of meiosis in mammalian oocytes.  相似文献   

18.
Polo-like kinase 1 (Plk1) is pivotal for proper mitotic progression, its targeting activity is regulated by precise subcellular positioning and phosphorylation. Here we assessed the protein expression, subcellular localization and possible functions of phosphorylated Plk1 (pPlk1Ser137 and pPlk1Thr210) in mouse oocytes during meiotic division. Western blot analysis revealed a peptide of pPlk1Ser137 with high and stable expression from germinal vesicle (GV) until metaphase II (MII), while pPlk1Thr210 was detected as one large single band at GV stage and 2 small bands after germinal vesicle breakdown (GVBD), which maintained stable up to MII. Immunofluorescence analysis showed pPlk1Ser137 was colocalized with microtubule organizing center (MTOC) proteins, γ-tubulin and pericentrin, on spindle poles, concomitantly with persistent concentration at centromeres and dynamic aggregation between chromosome arms. Differently, pPlk1Thr210 was persistently distributed across the whole body of chromosomes after meiotic resumption. The specific Plk1 inhibitor, BI2536, repressed pPlk1Ser137 accumulation at MTOCs and between chromosome arms, consequently disturbed γ-tubulin and pericentrin recruiting to MTOCs, destroyed meiotic spindle formation, and delayed REC8 cleavage, therefore arresting oocytes at metaphase I (MI) with chromosome misalignment. BI2536 completely reversed the premature degradation of REC8 and precocious segregation of chromosomes induced with okadaic acid (OA), an inhibitor to protein phosphatase 2A. Additionally, the protein levels of pPlk1Ser137 and pPlk1Thr210, as well as the subcellular distribution of pPlk1Thr210, were not affected by BI2536. Taken together, our results demonstrate that Plk1 activity is required for meiotic spindle assembly and REC8 cleavage, with pPlk1Ser137 is the action executor, in mouse oocytes during meiotic division.  相似文献   

19.
Oocytes from LTXBO mice exhibit a delayed entry into anaphase I and frequently enter interphase after the first meiotic division. This unique oocyte model was used to test the hypothesis that protein kinase C (PKC) may regulate the meiosis I-to-meiosis II transition. PKC activity was detected in LTXBO oocytes at prophase I and increased with meiotic maturation, with the highest (P < 0.05) activity observed at late metaphase I (MI). Treatment of late MI-stage oocytes with the PKC inhibitor, bisindolylmaleimide I (BIM), transiently reduced (P < 0.05) M-phase-promoting factor (MPF) activity and promoted (P < 0.05) progression to metaphase II (MII), while mitogen-activated protein kinase (MAPK) activity remained elevated during the MI-to-MII transition. Confocal microscopy analysis of LTXBO oocytes during this transition showed PKC-delta associated with the meiotic spindle and then with the chromosomes at MII. Inhibition of PKC activity also prevented untimely entry into interphase, but only when PKC activity was reduced in oocytes before the progression to MII and thus indicates that the transition into interphase is directly associated with the delayed triggering of anaphase I. Moreover, the defect(s) that initiate activation occur upstream of MAPK, as suppression of PKC activity failed to prevent activation by Mos(tm1Ev)/ Mos(tm1Ev) LTXBO oocytes expressing no detectable MAPK activity. In summary, PKC participates in the regulatory mechanisms that delay entry into anaphase I in LTXBO oocytes, and the disruption promotes untimely entry into interphase. Thus, loss of regulatory control over PKC activity during oocyte maturation disrupts the critical MI-to-MII transition, leading to a precocious exit from meiosis.  相似文献   

20.
Maintenance and timely termination of cohesion on chromosomes ensures accurate chromosome segregation to guard against aneuploidy in mammalian oocytes and subsequent chromosomally abnormal pregnancies. Sororin, a cohesion stabilizer whose relevance in antagonizing the anti-cohesive property of Wings-apart like protein (Wapl), has been characterized in mitosis; however, the role of Sororin remains unclear during mammalian oocyte meiosis. Here, we show that Sororin is required for DNA damage repair and cohesion maintenance on chromosomes, and consequently, for mouse oocyte meiotic program. Sororin is constantly expressed throughout meiosis and accumulates on chromatins at germinal vesicle (GV) stage/G2 phase. It localizes onto centromeres from germinal vesicle breakdown (GVBD) to metaphase II stage. Inactivation of Sororin compromises the GVBD and first polar body extrusion (PBE). Furthermore, Sororin inactivation induces DNA damage indicated by positive γH2AX foci in GV oocytes and precocious chromatin segregation in MII oocytes. Finally, our data indicate that PlK1 and MPF dissociate Sororin from chromosome arms without affecting its centromeric localization. Our results define Sororin as a determinant during mouse oocyte meiotic maturation by favoring DNA damage repair and chromosome separation, and thereby, maintaining the genome stability and generating haploid gametes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号