首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Studies were designed to further explore the use of pharmacological agents to produce developmentally competent enucleated mouse oocytes for animal cloning by somatic cell nuclear transfer. Metaphase II oocytes from CF-1 and B6D2F1 strains were activated with ethanol and subsequently exposed to demecolcine at various times postactivation. Chromosome segregation, spindle dynamics, and polar body (PB) extrusion were monitored by fluorescence microscopy using DNA-, microtubule-, and microfilament-selective probes. Exposure to demecolcine did not affect rates of oocyte activation induced by ethanol but did disrupt the coordination of cytokinesis and karyokinesis, suppressing the extent and completion of spindle rotation and second PB extrusion in a strain-dependent manner. Moreover, strain- and treatment-specific variations in the rate of oocyte enucleation were also detected. In particular, CF1 oocytes were more efficiently enucleated relative to B6D2F1 oocytes, and demecolcine treatments initiated early after activation resulted in higher enucleation rates than when treatment was delayed. The observed strain differences are possibly caused by a combination of factors, such as the time course of meiotic cell-cycle progression after ethanol activation, the degree of spindle rotation, and the extent of second PB extrusion. These results suggest that developmentally competent cytoplasts can be produced by timely exposure of activated oocytes to agents that disrupt spindle microtubules. However, the utility of the demecolcine-induced enucleation protocol will require further investigation into factors linking karyokinesis to cytokinesis at the levels of cell-cycle control and oocyte cytoskeletal remodeling following artificial or natural means of egg activation.  相似文献   

2.
王强  安志兴  顾玲  马利兵  郑月茂  张涌 《遗传》2004,26(5):653-657
在已有的demecolcine(以下简称Deme)诱导去核技术路线的基础上,以昆明白小鼠卵母细胞为实验材料,对影响去核率的几个因素(包括Deme浓度、Deme处理起始时间和作用时间、卵母细胞的卵龄)逐次进行实验。结果表明:(1)激活卵母细胞在浓度为0.4μg/mL和0.5μg/mL Deme-KSOM液中处理60 min均能有效去核,但0.5μg/mL组获得更高的去核率(33.3%)。(2)卵母细胞在激活后0~5 min之内迅速放入0.5μg/mL Deme-KSOM液中,处理60~180 min得到了相对较高的去核率(31.9%~24.5%)。(3)昆明白小鼠hCG注射后17~18 h收集的卵母细胞更有利于Deme诱导去核,去核率为27.1%。经比较分析,建立了优化的Deme诱导去核程序。 Abstract: On the basis of exiting technique pathway of demecolcine-induced enucleation(IE),several factors(Demecolcine concentration、time of demecolcine inition and treatment、oocytes age) affecting the IE rate were tested using Kunming mouse oocytes.The experiments’ results demonstrated that: In experiment 1,activated oocytes could be enucleated efficiently by treating with KSOM medium containing 0.4μg/mL or 0.5μg/mL demecolcine for 60 min,but 0.5μg/mL group gained the higher IE rate(33.3%).In experiment 2,maximum IE rate (31.9%~24.5%) were obtained when oocytes were exposed to 0.5μg/mL demecolcine between 0 and 5 min postactivition and treated for 60~180 min.In experiment 3,oocytes collected from Kunming mouse at 17~18h after hCG administration were favoriate to demecolcine-IE(27.1%). By comparision and analysis of the data,we established the optimized IE procedure.  相似文献   

3.
Demecolcine-induced enucleation (IE) of mouse oocytes has been shown to improve development to term of cloned mice. In this study, we characterized the kinetics and morphological progression of bovine oocytes subjected to IE, and evaluated their ability to support embryo development to the blastocyst stage after nuclear transfer (NT). In vitro matured bovine oocytes were parthenogenetically activated and subsequently exposed to demecolcine at various times post-activation. Onset and duration of demecolcine treatment significantly altered activation and IE frequencies, which varied from 7.1% to 100% and 33.3% to 91.7%, respectively, at 5 hr post-activation. A significant decrease in IE frequencies was observed at 17 hr post-activation (3.4%-46.1%), possibly due to reincorporation of chromosomes into the oocyte after incomplete second polar body (PB) extrusion. Oocytes were reconstructed by NT before (treatment 1) or after (treatment 2) activation and demecolcine treatment, and cultured in vitro. Cleavage (48.1%-54.2%) and blastocyst rates (15.7%-19%) were equivalent for the two treatments, as well as the total cell number in NT blastocysts. Furthermore, most of the blastocysts were completely diploid (treatment 2) or heteroploid but with a majority of diploid nuclei (treatment 1). Our results demonstrate that the IE method can be successfully used to produce enucleated bovine cytoplasts that are competent to support development to the blastocyst stage after NT. This technically simple approach may provide a more efficient method to enhance the success rate of NT procedures. Further studies are needed to improve the in vitro development efficiency and to expand our understanding of the mechanism(s) involved in demecolcine-induced enucleation.  相似文献   

4.
Treatment of pre-activated oocytes with demecolcine (DEM) has been shown to induce the extrusion of all oocyte chromosomes within the second polar body (PB2). However, induced enucleation (IE) rates are generally low and the competence of these cytoplasts to support embryonic development following somatic cell nuclear transfer (SCNT) is impaired. Here, we explored whether short treatments with DEM or another antimitotic, nocodazole (NOC), improve IE efficiency, and determined the most appropriate timing for nuclear transfer in the cytoplasts produced. We show, for the first time, that IE can be accomplished in mouse and goat oocytes using NOC and that short treatments with DEM or NOC result in similar IE rates, which proved to be strain- and species-specific. Because enucleation induced by both antimitotic drugs is reversible, the IE protocol was combined with the mechanical aspiration of PB2s to increase permanent enucleation rates in mouse oocytes. None of the cloned mouse embryos produced from the resultant cytoplasts developed to the blastocyst stage. However, when they were reconstructed prior to the activation and antimitotic treatment, their in vitro embryonic development was similar to that of cloned embryos produced from mechanically-enucleated oocytes.  相似文献   

5.
Lan GC  Wu YG  Han D  Ge L  Liu Y  Wang HL  Wang JZ  Tan JH 《Cloning and stem cells》2008,10(2):189-202
Although demecolcine-assisted enucleation has been performed successfully in porcine and cattle, the mechanism and protocol optimization of chemically assisted enucleation need further investigation. The present study optimized the protocol for goat oocyte enucleation and demonstrated that a 30-min treatment with 0.8 ng/mL demecolcine-induced cytoplasmic protrusions in over 90% of the oocytes. Rates of enucleation, cell fusion, and blastocyst formation were significantly higher after demecolcine-assisted than after blind aspiration enucleation, although differences in rates of live births remain to be unequivocally determined between the two treatments. The ability to form protrusions decreased significantly as spindles became less organized in aged oocytes and the oocytes with a poor cumulus expansion. More than 93% of the demecolcine-induced protrusions persisted for 2 h in the absence of cytochalasin B (CB) but most disappeared within 30 min of CB treatment. The spindle disintegrated, an actin-rich ring formed around the chromosome mass and the MAP kinase activity increased significantly after demecolcine treatment. When oocytes with induced protrusions were treated with CB, however, the contractile ring disappeared, the spindle reintegrated, and both MPF and MAP kinase activities decreased significantly. It is concluded that (1) cytoplasmic protrusions can be induced in goat oocytes with a very low concentration of demecolcine; (2) oocyte selection and enucleation can be achieved simultaneously with demecolcine treatment; and (3) an interactive effect between the MAP kinase, MPF, microfilaments and microtubules might be implicated in the control of cytoplasmic protrusion formation after demecolcine treatment.  相似文献   

6.
Our objective was to induce enucleation (IE) of activated mouse oocytes to yield cytoplasts capable of supporting development following nuclear transfer. Fluorescence microscopy for microtubules, microfilaments, and DNA was used to evaluate meiotic resumption after ethanol activation and the effect of subsequent transient treatments with 0.4 micro g/ml of demecolcine. Using oocytes from B6D2F1 (C57BL/6 x DBA/2) donors, the success of IE of chromatin into polar bodies (PBs) was dependent on the duration of demecolcine treatment and the time that such treatment was initiated after activation. Similarly, variations in demecolcine treatment altered the proportions of oocytes exhibiting a reversible compartmentalization of chromatin into PBs. Treatment for 15 min begun immediately after activation yielded an optimized IE rate of 21% (n = 80) when oocytes were evaluated after overnight recovery in culture. With this protocol, 30-50% of oocytes were routinely scored as compartmentalized when assessed 90 min postactivation. No oocytes could be scored as such following overnight recovery, with 66% of treated oocytes cleaving to the 2-cell stage (n = 80). Activated cytoplasts were prepared by mechanical removal of PBs from oocytes whose chromatin had undergone IE or compartmentalization. These cytoplasts were compared with mechanically enucleated, metaphase (M) II cytoplasts whose activation was delayed in nuclear transfer experiments using HM-1 embryonic stem cells. Using oocytes from either B6D2F1 or B6CBAF1 (C57BL/6 x CBA) donors, the in vitro development of cloned embryos using activated cytoplasts was consistently inferior to that observed using MII cytoplasts. Live offspring were derived from both oocyte strains using the latter, whereas a single living mouse was cloned from activated B6CBAF1 cytoplasts.  相似文献   

7.
Chemically assisted handmade enucleation of porcine oocytes   总被引:1,自引:0,他引:1  
The purpose of our work was to find an efficient and reliable chemically assisted procedure for enucleation of porcine oocytes connected to the handmade cloning (HMC) technique without the potentially harmful chromatin staining and ultraviolet (UV) irradiation for cytoplast selection. After 41-42 h in vitro maturation, porcine oocytes were incubated with 0.4 microg/mL demecolcine for 45 min. Subsequently, the cumulus cells were removed and zonae pellucidae were partially digested. Oocytes with extrusion cones or oocytes only with polar body (PB) were subjected to oriented bisection. Less than half of the cytoplasm with the extrusion cone or adjacent to the PB was removed with a microblade. The remaining putative cytoplasts, containing the major part of the cytoplasm, were used as recipients for reconstruction with porcine fetal fibroblasts as nuclear donors. The overall efficiency achieved with chemically assisted enucleation was higher compared to oriented bisection without demecolcine incubation (90 +/- 3% vs. 81 +/- 4%, respectively; mean +/- absolute deviation [AD]). Reconstructed and activated embryos were cultured in vitro for 7 days. Fusion, cleavage and blastocyst rates were 87 +/- 7%, 97 +/- 6%, and 28 +/- 9%, respectively. These rates are at least as good as those achieved with normal HMC (81 +/- 4%, 87 +/- 8%, and 21 +/- 9%, respectively). For traditional, micromanipulator-based cloning, fusion and blastocyst rates were similar (81 +/- 10% and 21 +/- 6%, respectively), but the cleavage rate was lower (69 +/- 9%). In conclusion, chemically assisted handmade enucleation seems to be a simpler and potentially superior alternative to more conventional methods used for somatic cell nuclear transfer in pigs.  相似文献   

8.
The rat oocyte spontaneously activates under a wide variety of conditions. This process progresses to MIII arrest that is not responsive to parthenogenetic activation and development. Insofar as activation involves extrusion of the second polar body (PBII), we set out to determine if preventing this step by inhibiting microfilaments would change the course of spontaneous activation (SA). In particular, how long does the effect of SA persist while retaining reversibility of PBII extrusion once inhibitors are removed? We wanted to determine if the eggs would be responsive to parthenogenetic activation and capable of resuming development once a permanent inhibition is achieved. We set out to determine whether SA would depend on the ovular age of oocytes. Inhibiting of PBII extrusion was achieved by affecting microtubules with demecolcine or nocodazole or actin filaments with cytochalasin B (CB) and cytochalasin D (CD). We found that all oocytes undergo SA and progression to MIII; however, the rapidity of spontaneous activation is a function of the ovular age of the oocyte. The resumption of the meiosis period changes dramatically from 20 to 180 min with decreasing ovular age. We established that suppression of PB formation can be effectively achieved in oocytes of younger ovular age, and that inhibition of PB extrusion became irreversible after 3.5 h of treatment. We established that drug-treated oocytes could undergo subsequent reactivation and in vitro development to blastocysts. The rate of in vitro development of cytochalasin-treated group was comparable to parthenogenetic controls, while nocodazole and demecolcine produced oocytes that developed at lower frequencies. Thus, the application of the microfilament inhibiting drugs helps to overcome the negative effect of SA that results in MIII arrest. Here we also show optimized parthenogenetic stimulation that resulted in development to the blastocyst stage at frequency comparable to development of fertilized embryos.  相似文献   

9.
To establish experimental protocols for cloning golden hamsters, optimal concentrations of colchicine and demecolcine were determined for inducing cytoplasmic protrusion (containing chromosomes) and assisting enucleation of their oocytes. Denuded oocytes at different ages were treated with 2.5–10 μg/ml of colchicine for 1–4 h or 0.02–0.6 μg/ml of demecolcine for 15–60 min. Cytoplasmic protrusions of oocytes were removed with a micromanipulation pipette. The results show that: 1) at 13.5–18 h post-hCG injection, ∼90% of oocytes treated for with 10 μg/ml of colchicine formed cytoplasmic protrusions, and in some oocytes enucleation occurred; 2) when treated with 0.4 μg/ml of demecolcine for 1 h, cytoplasmic protrusions 13.5–18 h post-hCG treatment were present in almost all oocytes; 3) after the protrusions induced by either treatment had been removed, the assisted enucleation rate was >80%, whereas it was ∼32% with blind enucleation.  相似文献   

10.
In female mice, despite the presence of slight DNA double-strand breaks (DSBs), fully grown oocytes are able to undergo meiosis resumption as indicated by germinal vesicle breakdown (GVBD); however, severe DNA DSBs do reduce and delay entry into M phase through activation of the DNA damage checkpoint. But little is known about the effect of severe DNA DSBs on the spindle assembly checkpoint (SAC) during oocyte maturation. We showed that nearly no first polar body (PB1) was extruded at 12 h of in vitro maturation (IVM) in severe DNA DSBs oocytes, and the limited number of oocytes with PB1 were actually at telophase. However, about 60% of the severe DNA DSBs oocytes which underwent GVBD at 2 h of IVM released a PB1 at 18 h of IVM and these oocytes did reach the second metaphase (MII) stage. Chromosome spread at MI and MII stages showed that chromosomes fragmented after GVBD in severe DNA DSBs oocytes. The delayed PB1 extrusion was due to the disrupted attachment of microtubules to kinetochores and activation of the SAC. At the same time, misaligned chromosome fragments became obvious at the first metaphase (MI) in severe DNA DSBs oocytes. These data implied that the inactivation of SAC during the metaphase-anaphase transition of first meiosis was independent of chromosome integrity. Next, we induced DNA DSBs in vivo, and found that the number of superovulated oocytes per mouse was significantly reduced; moreover, this treatment increased the percentage of apoptotic oocytes. These results suggest that DNA DSBs oocytes undergo apoptosis in vivo.  相似文献   

11.
Assembly of the meiotic spindles during progesterone-induced maturation of Xenopus oocytes was examined by confocal fluorescence microscopy using anti-tubulin antibodies and by time-lapse confocal microscopy of living oocytes microinjected with fluorescent tubulin. Assembly of a transient microtubule array from a disk-shaped MTOC was observed soon after germinal vesicle breakdown. This MTOC-TMA complex rapidly migrated toward the animal pole, in association with the condensing meiotic chromosomes. Four common stages were observed during the assembly of both M1 and M2 spindles: (1) formation of a compact aggregate of microtubules and chromosomes; (2) reorganization of this aggregate resulting in formation of a short bipolar spindle; (3) an anaphase-B-like elongation of the prometaphase spindle, transversely oriented with respect to the oocyte A-V axis; and (4) rotation of the spindle into alignment with the oocyte axis. The rate of spindle elongation observed in M1 (0.7 microns min-1) was slower than that observed in M2 (1.8 microns min-1). Examination of spindles by immunofluorescence with antitubulin revealed numerous interdigitating microtubules, suggesting that prometaphase elongation of meiotic spindles in Xenopus oocytes results from active sliding of antiparallel microtubules. A substantial number of maturing oocytes formed monopolar microtubule asters during M1, nucleated by hollow spherical MTOCs. These monasters were subsequently observed to develop into bipolar M1 spindles and proceed through meiosis. The results presented define a complex pathway for assembly and rotation of the meiotic spindles during maturation of Xenopus oocytes.  相似文献   

12.
During interkinesis, a metaphase II (MetII) spindle is built immediately after the completion of meiosis I. Oocytes then remain MetII arrested until fertilization. In mouse, we find that early mitotic inhibitor 2 (Emi2), which is an anaphase-promoting complex inhibitor, is involved in both the establishment and the maintenance of MetII arrest. In MetII oocytes, Emi2 needs to be degraded for oocytes to exit meiosis, and such degradation, as visualized by fluorescent protein tagging, occurred tens of minutes ahead of cyclin B1. Emi2 antisense morpholino knockdown during oocyte maturation did not affect polar body (PB) extrusion. However, in interkinesis the central spindle microtubules from meiosis I persisted for a short time, and a MetII spindle failed to assemble. The chromatin in the oocyte quickly decondensed and a nucleus formed. All of these effects were caused by the essential role of Emi2 in stabilizing cyclin B1 after the first PB extrusion because in Emi2 knockdown oocytes a MetII spindle was recovered by Emi2 rescue or by expression of nondegradable cyclin B1 after meiosis I.  相似文献   

13.
本实验目的是研究demecolcine辅助去核的卵母细胞能否支持牛的核移植胚胎的发育。通过化学药物demecolcine处理牛MII期卵母细胞来辅助去除牛卵母细胞核,并用去核的卵母细胞做受体,进行核移植的研究。实验结果显示,demecolcine辅助去核后的卵母细胞质膜有明显一个或二个突起,并且突起内都含有卵母细胞染色体组,显示去核效果较好(57.89%~73.3%)。药物处理一小时为最适时间,去核率可达73.3%。对demecolcine辅助去核的卵母细胞的核移植胚胎发育情况显示囊胚率较盲吸法核移植胚胎较好(12.5%VS10.2%),但二者差异不显著(p>0.05)。Demecolcine药物处理后的卵母细胞能够支持核移植胚胎的发育。Demecolcine辅助去核可以在牛体细胞核移植中的到应用。  相似文献   

14.
The effects of cumulus cell removal and centrifugation of maturing bovine oocytes on nuclear maturation and subsequent embryo development after parthenogenetic activation and nuclear transfer were examined. Removal of cumulus cells at 4, 8, and 15 hr after in vitro maturation (IVM) or the centrifugation of denuded oocytes had no effect on maturation rates. Oocytes treated at 0 hr of IVM had a lower expulsion rate (50%) of the first polar body (PB1). The removal of cumulus cells and centrifugation affected the pattern of spindle microtubule distribution and division of chromosomes. There were almost no spindle microtubules allocated to PB1 and the spindles were swollen in anaphase I and telophase I oocytes. Approximately 20% of PB1 oocytes contained tripolar or multipolar spindles. After activation, oocytes denuded with or without centrifugation at 8 hr of IVM resulted in the lowest rate of development (3.0%). Denuded oocytes at 4, 15, and 24 hr of IVM with centrifugation or not resulted in similar blastocyst development rates (9.6%-13.2%). However, centrifugation of oocytes denuded at the beginning of IVM resulted in lower blastocyst development rate (8.1%, P < 0.05) than the noncentrifuged oocytes (17.3%). After nuclear transfer, the blastocyst development rates of oocytes denuded and centrifuged at 0, 4, and 8 hr of IVM were not different when compared to the same patch of noncentrifuged oocytes. However, oocytes denuded and centrifuged at 15 hr of IVM resulted in lower (P < 0.05) blastocyst development rates than the noncentrifuged oocytes. The results of this study suggest that removal of cumulus cells and centrifugation of denuded oocytes affect the spindle pattern. Embryo development of denuded and centrifuged oocytes may differ depending on the time of removal of cumulus cells.  相似文献   

15.
Mammalian oocytes lack centrioles but can generate bipolar spindles using several different mechanisms. For example, mouse oocytes have acentriolar microtubule organization centers (MTOCs) that contain many components of the centrosome, and which initiate microtubule polymerization. On the contrary, human oocytes lack MTOCs and the Ran‐mediated mechanisms may be responsible for spindle assembly. Complete knowledge of the different mechanisms of spindle assembly is lacking in various mammalian oocytes. In this study, we demonstrate that both MTOC‐ and Ran‐mediated microtubule nucleation are required for functional meiotic metaphase I spindle generation in porcine oocytes. Acentriolar MTOC components, including Cep192 and pericentrin, were absent in the germinal vesicle and germinal vesicle breakdown stages. However, they start to colocalize to the spindle microtubules, but are absent in the meiotic spindle poles. Knockdown of Cep192 or inhibition of Polo‐like kinase 1 activity impaired the recruitment of Cep192 and pericentrin to the spindles, impaired microtubule assembly, and decreased the polar body extrusion rate. When the RanGTP gradient was perturbed by the expression of dominant negative or constitutively active Ran mutants, severe defects in microtubule nucleation and cytokinesis were observed, and the localization of MTOC materials in the spindles was abolished. These results demonstrate that the stepwise involvement of MTOC‐ and Ran‐mediated microtubule assembly is crucial for the formation of meiotic spindles in porcine oocytes, indicating the diversity of spindle formation mechanisms among mammalian oocytes.  相似文献   

16.
RhoA, a small GTPase, plays versatile roles in many aspects of cell function such as stress fiber formation, cytokinesis, and cell polarization. In this study, we investigated the subcellular localization of RhoA and its possible roles during oocyte maturation and fertilization. RhoA was localized in the cytoplasm of eggs from the germinal vesicle (GV) stage to 2-cell stage, especially concentrating in the midbody of telophase spindle when oocyte extruded PB1 and PB2. The RhoA kinases (ROCKs) specific inhibitor Y-27632 blocked GV breakdown (GVBD) and first polar body extrusion, but did not affect apparatus formation and anaphase/telophase I entry. Anti-RhoA antibody microinjection into the oocytes showed similar results. RhoA inhibitor caused abnormal organization of microfilaments, failure of spindle rotation, PB2 extrusion as well as cleavage furrow formation, while sister chromatid separation was not affected. Microinjection of RhoA antibody also blocked PB2 emission. Our findings indicate that RhoA, by regulating microfilament organization, regulates several important events including GVBD, polar body emission, spindle rotation, and cleavage.  相似文献   

17.
In this study, we examined the effect of heat pulsing on oocyte maturation and assessed the possible role of stress-activated enzymes during heat stress-induced meiotic maturation. Denuded oocytes from immature eCG-primed mice were pulsed for 30 min at increasing temperatures from 40 degrees C to 43 degrees C in dibutyryl cAMP-containing medium and were subsequently cultured at 37 degrees C for a total incubation time of 17-18 h. Oocytes exposed to 42 degrees C showed the greatest stimulation of maturation, with no effect at 43 degrees C. A heat pulse did not compromise progression to metaphase II as observed by polar body (PB) formation. The AMP-activated protein kinase (PRKA) inhibitors compound C and Ara-A each blocked the meiosis-stimulating effects of heat. Western blots showed that acetyl-CoA carboxylase, an important substrate of PRKA, was phosphorylated in heat-treated germinal vesicle-stage oocytes, indicating activation of PRKA before maturation. The mitogen-activated protein 2 kinase (MAP2K1) inhibitor PD98059 also prevented heat-induced maturation, but this effect was unrelated to MAPK1/3 activation, which was not observed until after germinal vesicle breakdown (GVB). Phosphorylated MAPK14 was not detected in the oocyte under any experimental condition, and only high concentrations of the MAPK14 inhibitor SB203580 blocked heat-stimulated maturation, suggesting that MAPK14 is not involved in meiotic induction. MAPK8/9 was activated by heat, and the MAPK8/9 inhibitor SP600125, but not JUN N-terminal kinase I, blocked heat-induced maturation. Heat treatment transiently suppressed GVB and PB formation in spontaneously maturing oocytes by a mechanism that is apparently different from its meiosis-inducing action. Collectively, these data show that an acute heat pulse stimulates GVB in meiotically arrested oocytes and suggest that this effect is mediated through the activation of PRKA.  相似文献   

18.
Germinal vesicle migration (GVM) as evidenced by the appearance of the germinal vesicle at the animal pole surface was induced by nocadazole and demecolcine (colcemid). Nocodazole significantly lowered the progesterone ED50 for germinal vesicle dissolution (GVD). Both demecolcine and nocodazole enhanced centrifugation-induced GVM (i.e., lowered ooplasmic viscoelasticity) after 6-h incubation, and both potentiated the effect of progesterone in this assay. Estradiol, by contrast, inhibited GVM induced by demecolcine in both follicle-enclosed and denuded oocytes. Estradiol was also found to inhibit the normal enhancement of centrifugation-induced GVM by demecolcine or progesterone. Taxol was found to have effects that were generally opposite to those of demecolcine and nocodazole. Taxol inhibited centrifugation-induced GVM either alone or in the presence of progesterone. In addition, taxol significantly increased the progesterone ED50 for GVD induction. Taken together the available data support the hypothesis that microtubules play a role in maintaining the internal position of the germinal vesicle in the prematuration oocyte and that changes occur in the oocyte cytoskeleton during maturation.  相似文献   

19.
This study attempted to investigate the time course of meiotic progression after transferring primary spermatocyte (PS) into ooplasm at different maturing stages. In present experiments, PSs were introduced into maturing ooplasts or oocytes by electrofusion. Higher fusion rate was obtained by phytohemagglutinin (PHA) agglutination than by perivitelline space (PVS) insertion. When the ooplasms prepared at 0, 2, 5, and 8.5 hr of in vitro maturation (IVM) were used as recipients and PSs were used as donors, the reconstructed cells extruded the first polar body (PB1) approximately 8.5, 7, 5.5, and 3 hr after electrofusion, respectively. Especially, when ooplasm cultured for 8.5 hr in vitro after GV removal was fused with PS, the PB1 was emitted 7-11 hr after electrofusion. Additionally, the PB1 extrusions of GV and pro-MI oocytes fertilized with PSs were 2.5 hr earlier than control oocytes. The results suggest that (1) PSs undergo the first meiosis in different time courses when introduced into ooplasm at different maturing stages; (2) GV material plays an important role in determining the timing of PB1 extrusion; and (3) first meiotic division of GV and pro-MI oocytes can be accelerated by introducing PS.  相似文献   

20.
Brief treatment of metaphase II (MII) stage porcine oocytes with 0.4 microg/mL demecolcine in the presence of 0.05 M sucrose produces a membrane protrusion that contains a condensed chromosome mass. The present study examined the optimal conditions for demecolcine and nocodazole treatment in chemically assisted removal of chromosomes. When matured oocytes were treated with 0.1-0.4 microg/mL demecolcine for 60 min or with 0.4 microg/mL demecolcine for 30 min or 3 microg/mL nocodazole for 30 or 60 min, more than 70% of oocytes had a membrane protrusion containing condensed chromosomes were located. There was no difference in the in vitro developmental potential of enucleated oocytes assisted by 0.1 and 0.4 microg/mL demecolcine or 3 microg/mL nocodazole that received porcine somatic cells. After transfer to 10 recipients, however, two of six recipients that received demecolcine-treated enucleated eggs produced four healthy cloned piglets, but none of the four recipients of nocodazole-treated enucleated eggs produced piglets. Further studies are required to increase the successful development to term because the proportion of live piglets was low (4/2, 672, 0.15%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号