首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
从嗜热硫矿硫化叶菌(Sulfolobussolfataricus)ATCC35092的基因组中用PCR方法扩增得到编码MTSase和MTSase的基因,分别将其插入原核表达载体pTrc99a中,并转入大肠杆菌BL21(DE3),进行诱导表达。MTSase和MTHase酶活产率达到了31.3U/g(wetcell)和403U/g(wetcell)。在75℃,pH5.0条件下,两酶联合作用转化淀粉生产海藻糖,当淀粉浓度为15%,DE值为10时,海藻糖转化率最高为53.6%。  相似文献   

2.
海藻糖微生物酶法合成机制的研究*   总被引:1,自引:0,他引:1       下载免费PDF全文
来源于嗜酸热古菌芝田硫化叶菌 (Sulfolobusshibatae)B1 2的麦芽寡糖基海藻糖合酶(MTSase)和麦芽寡糖基海藻糖海藻糖水解酶 (MTHase)基因在大肠杆菌中获得表达。将获得纯化的两个酶 ,分别以麦芽寡糖和淀粉为转化底物 ,在pH5 5 ,6 0℃条件下合成海藻糖。从反应产物分析结果可知 ,两个酶合成海藻糖时能利用的最小底物是麦芽四糖 ,海藻糖产率与麦芽寡糖链长正相关。同时还发现两个酶都具有轻微的α 1 ,4 葡萄糖苷酶活性 ,能在麦芽寡糖还原末端水解α 1 ,4糖苷键  相似文献   

3.
分离克隆了腾冲嗜热杆菌(Thermoanaerobacter tengcongensis)海藻糖磷酸化酶(TreP)的编码基因(treP), 该酶可催化以葡萄糖和α-1-磷酸葡萄糖为底物的海藻糖合成反应及其逆向的分解反应. 反向mRNA点杂交实验表明, 腾冲嗜热杆菌中treP基因在高盐胁迫条件下表达量增加, 而在海藻糖诱导条件下表达量降低. 将该基因导入不含TreP的大肠杆菌中进行诱导表达, SDS-PAGE表明, 异源表达的TreP分子量约为90 kD, 与预期值相同. 通过葡萄糖氧化酶法测定分解产物葡萄糖的产率表明: TreP催化海藻糖分解反应的最适温度是70℃, 最适pH值为7.0; 通过HPLC检测合成产物海藻糖的产率表明: TreP催化合成反应的最适温度为70℃, 最适pH值为6.0. 在最适反应条件下, 50 μg的TreP粗酶可催化25 mmol/L α-1-磷酸葡萄糖与葡萄糖在30 min合成11.6 mmol/L海藻糖; 而同量的酶在同样时间内仅能将250 mmol/L海藻糖分解生成1.5 mmol/L葡萄糖. 以上体内胁迫和诱导表达分析及体外酶学性质分析均证明该酶的主要功能是催化海藻糖的合成反应. 热稳定性实验表明, 该酶性质比较稳定, 在50℃下温育7 h还能保持77%以上的活性, 是一个有潜在工业用途的新的热稳定海藻糖合成酶.  相似文献   

4.
胶样菌CB39产海藻糖的研究   总被引:2,自引:0,他引:2  
从长白山天池水中筛选到一株低温条件下产糖的细菌。通过薄层层析、成脎反应、毛细管等速电泳以及红外光谱法确定该糖为海藻糖;经鉴定此菌株是胶样菌属中的一个新种(ColloidesSp.)定名为CB39;与已报道的产海藻糖菌株不同的是,菌株CB39能将产生的海藻糖分泌到细胞外,18℃时其培养液中海藻糖含量为2562mg/g干菌体;采用紫外诱变法筛选到一株在25℃条件下产海藻糖量为4167mg/g干菌体的高产突变株5,产糖量是同温度下野生菌的8倍。  相似文献   

5.
分别利用葡萄糖或葡萄糖酸钠与十一碳酸、月桂酸与十一碳酸为混合碳源进行嗜水气单孢菌 (Aeromonashydrophila)菌株 4AK4的摇瓶培养 ,实现了含有 3 羟基戊酸 (3HV)单体的聚羟基脂肪酸酯的微生物合成。当使用葡萄糖或葡萄糖酸钠与十一碳酸为混合碳源时 ,野生型A .hydrophila 4AK4及含有 3 羟基丁酸辅酶A合成基因phaA和phaB的重组A .hydrophila 4AK4 (pTG01)能够合成-3-羟基丁酸(3HB)与-3HV的共聚物 ,且葡萄糖或葡萄糖酸钠与十一碳酸比例为 1∶1时最利于细胞生长和PHA的积累。当使用月桂酸和十一碳酸为混合碳源时 ,A .hydrophila4AK4能够合成-3HB、3HV与 β-羟基己酸 (3HHx)的共聚物 ,且随着混合碳源中十一碳酸的含量增加 ,A .hydrophila4AK4合成的PHA中-3HV的比例增加 ,而-3HB和-3HHx的比例降低.  相似文献   

6.
黑曲霉N14植酸酶基因在巴斯德毕赤酵母中的高效表达   总被引:10,自引:0,他引:10  
从黑曲霉N14基因组DNA中扩增出植酸酶phyA基因表达片段 ,并将其克隆到pMD18-T载体中。以此片段构建了pPIC9K-phyA重组表达载体 ,目的片段以正确的阅读框架插入到pPIC9K的多克隆位点EcoRⅠ和NotⅠ之间。重组表达载体经XbaⅠ线性化处理 ,电击转化毕赤酵母 ,经G418抗性筛选、酶活性测定、PCR鉴定和SDS-PAGE分析 ,获得了两株产酶活性分别为 14 39583u mL发酵液 (PP N1422 )和14 89083u/mL发酵液 (PP-N1444)的高产工程菌 ,其酶活性分别是出发菌株酶活性 (422u/mL)的 34113倍和 35286倍 ,重组酵母具有很好的遗传稳定性。重组植酸酶在pH值 2.5~3.0和 5.0~5.5时酶活性最高 ,且在pH4.5~6.5之间均有相当高的酶活性 ,最适作用温度为55℃。  相似文献   

7.
海藻糖对乳酸菌的抗逆保护研究   总被引:5,自引:1,他引:5       下载免费PDF全文
研究了在冷冻干燥、高温及冻融等胁迫条件下,海藻糖对嗜热链球菌(Streptococcus ther- mophillus)和植物乳杆菌(Lactobacillus plantarum)菌体细胞的保护作用。结果表明在冷冻干燥过程 中,海藻糖保护的细胞存活率分别达75%和33%,而对照分别为19%和l%;用90℃高温处理干燥 状态和溶液状态的嗜热链球菌,证明海藻糖能明显提高细胞的耐热性;用冻融法反复处理嗜热链球 菌4次和8次,加海藻糖保护的细胞存活率显著高于对照。在扫描电镜下观察这  相似文献   

8.
绿僵菌产海藻糖水解酶培养条件研究   总被引:2,自引:0,他引:2  
丝状真菌绿僵菌能产生一系列二糖水解酶,其中包括海藻糖水解酶。这些酶在绿僵菌对昆虫的致病过程中起着重要的作用。本文研究了不同碳源、氮源对金龟子绿僵菌Metarhizium anisopliae var. acridum菌株CQMa102产生与分解昆虫血淋巴中海藻糖等二糖相关的海藻糖水解酶活性的影响。结果表明:分别以葡萄糖、麦芽糖、蔗糖、山梨醇和可溶性淀粉为碳源,金龟子绿僵菌均可产生海藻糖水解酶,但最佳碳源是可溶性淀粉,因为由其诱导产生的海藻糖水解酶具有最高的总活性和比活性以及更多的同工酶,山梨醇次之。硝态氮(NaNO3)作为唯一氮源时,几乎检测不出海藻糖水解酶活性,而铵态氮((NH4)2SO4)或NaNO3和有机氮(蛋白胨和酵母浸膏)混合氮源作氮源时,海藻糖水解酶活性都很高。在绿僵菌菌丝提取液和滤液的海藻糖水解酶活性比较中发现:CQMa102在多数碳源的培养基中产生的海藻糖水解酶主要分泌到培养基中,仅有少数结合在细胞壁上。  相似文献   

9.
马俊  周小毛  王翰 《昆虫知识》2013,50(3):764-769
本试验以4龄小菜蛾Plutella xylostella(L.)体内海藻糖酶为研究对象,研究了其酶学特性以及4种常用杀虫剂在离体条件下对其活性的影响。结果表明,小菜蛾体内海藻糖酶的最适反应pH为6.0,温度50℃,其米氏常数(Km)为(12.57±0.99)mmol/L,最大反应速度(Vm)为(0.775±0.04)mmol/(min·g pro)。在药剂浓度为40mg/L时,4种杀虫剂(丙溴磷、灭多威、仲丁威和多杀霉素)对4龄幼虫海藻糖酶活性均有不同程度的抑制作用,其抑制率分别为25.83%、20.19%、18.99%和18.62%;而且随着药剂浓度的增加,上述4种杀虫剂对小菜蛾海藻糖酶活性的抑制率也逐渐增大。  相似文献   

10.
从武夷山和张家界自然保护区发现三虫草新种,武夷山虫草Cordyceps wuyishanensis, 张家界虫草Cordyceps zhangjiajiensis和拟茂兰虫草Cordyceps maolanoides。武夷山虫草和其近缘种的主要区别是,可孕部分柱状、非多年生、子囊孢子不断裂和间细胞长达6~10祄。张家界虫草与其近缘种相比较的鉴别特征为非木质化的较小子座、子囊壳表生和具有较长的(15~23祄)次生子囊孢子。拟茂兰虫草和近缘种茂兰虫草C.maolanoides的形态特征相近,其主要差别是前者的子座和子囊壳都小得多。报道了玫烟色拟青霉Paecilomyces fumosoroseus与蜣螂虫草Cordyceps geotrupis 有密切关系。研究标本保存于贵州大学真菌资源研究室(LFRGU)。  相似文献   

11.
Actinomycetales are known to produce various secondary metabolites including products with surface-active and emulsifying properties known as biosurfactants. In this study, the nonpathogenic actinomycetes Tsukamurella spumae and Tsukamurella pseudospumae are described as producers of extracellular trehalose lipid biosurfactants when grown on sunflower oil or its main component glyceryltrioleate. Crude extracts of the trehalose lipids were purified using silica gel chromatography. The structure of the two trehalose lipid components (TL A and TL B) was elucidated using a combination of matrix-assisted laser desorption/ionization time-of-flight/time-of-flight/tandem mass spectroscopy (MALDI-ToF-ToF/MS/MS) and multidimensional NMR experiments. The biosurfactants were identified as 1-α-glucopyranosyl-1-α-glucopyranosid carrying two acyl chains varying of C4 to C6 and C16 to C18 at the 2′ and 3′ carbon atom of one sugar unit. The trehalose lipids produced demonstrate surface-active behavior and emulsifying capacity. Classified as risk group 1 organisms, T. spumae and T. pseudospumae hold potential for the production of environmentally friendly surfactants.  相似文献   

12.
The fluffy layer fraction prepared from Bacterionema matruchotii was found to possess high activity for the biosynthesis of mycolic acids which were bound to an unknown compound by an alkali-labile linkage [T. Shimakata, M. Iwaki, and T. Kusaka (1984) Arch. Biochem. Biophys. 229, 329-339]. To determine the structure of the mycolate-containing compound, it was purified and analyzed by field desorption (FD) and secondary ion mass spectrometry (SI-MS). When non-labelled palmitic acid was used as a precursor in the in vitro biosynthetic system, the underivatized product had a cationized molecular ion, [M + Na]+, at m/z 843 in FD-MS and a protonated ion, [M + H]+, at m/z 821 in SI-MS, corresponding to the quasimolecular ion of trehalose monomycolate (C32:0). In SI-MS, characteristic fragment ions due to cleavage of glycosidic linkages were clearly detected in addition to the molecular ion. If [1-13C]palmitic acid was the precursor, 2 mass unit increases in both the quasimolecular and fragment ions were observed, indicating that two molecules of palmitate were incorporated into the product. alpha-Trehalose was found in the aqueous phase after saponification of the product. By the electron impact mass spectrometry of the trimethylsilylated product, the mycolate was found to be esterified with an hydroxyl group at position 6 of the trehalose molecule. These results clearly demonstrated that the predominant product synthesized by the fluffy layer fraction with palmitate as substrate was 6-monomycolate (C32:0) of alpha-D-trehalose. Because newly synthesized mycolic acid was mainly in the form of trehalose monomycolate instead of free mycolate or trehalose dimycolate, the role of trehalose in the biosynthesis of mycolic acid is discussed.  相似文献   

13.
We have isolated and purified to homogeneity an alpha,alpha'-trehalose 6-monomycolate:alpha,alpha'-trehalose mycolyltransferase (trehalose mycolyltransferase) from Mycobacterium smegmatis that catalyzes the exchange of a mycolyl group between trehalose, trehalose 6-monomycolate (TM), and trehalose 6,6'-dimycolate (TD). This enzyme was prominent in M. smegmatis and it catalyzed the following reactions. TM + [14C]trehalose in equilibrium [14C]TM + trehalose [14C]TM + TM in equilibrium [14C]TD + trehalose This enzyme was purified by (i) ammonium sulfate fractionation, (ii) QAE-Sephadex A-50 column chromatography, (iii) gel filtration on a Sephadex G-75 column, and (iv) SP-Sephadex C-50 column chromatography. The purified protein yielded a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 25,000. This enzyme was a glycoprotein, had no cofactor requirement, and was highly specific for alpha,alpha'-trehalose as the mycolate acceptor. It was less specific for the acyl donor group since the palmitoyl group in trehalose 6-monopalmitate was easily exchangeable. There was no TM acylhydrolase activity in the purified enzyme, suggesting that it is probably associated with the anabolic pathway of mycolic acid metabolism. We postulate the formation of a mycolyl-enzyme intermediate in this reaction. Such an intermediate could play a central role in the transfer of mycolic acid to form the prominent cell wall components of mycobacterial TD and possibly murein-arabinogalactan-mycolate.  相似文献   

14.
Ethanol-soluble organic acid, carbohydrate, and amino acid constituents of alfalfa (Medicago sativa) roots and nodules (cytosol and bacteroids) have been identified by gas-liquid chromatography and high performance liquid chromatography. Among organic acids, citrate was the predominant compound in roots and cytosol, with malonate present in the highest concentration in bacteroids. These two organic acids together with malate and succinate accounted for more than 85% of the organic acid pool in nodules and for 97% in roots. The major carbohydrates in roots, nodule cytosol, and bacteroids were (descending order of concentration): sucrose, pinitol, glucose, and ononitol. Maltose and trehalose appeared to be present in very low concentrations. Asparagine, glutamate, alanine, γ-aminobutyrate, and proline were the major amino acids in cytosol and bacteroids. In addition to these solutes, serine and glutamine were well represented in roots. When alfalfa plants were subjected to 0.15 m sodium chloride stress for 2 weeks, total organic acid concentration in nodules and roots were depressed by more than 40%, whereas lactate concentration increased by 11, 27, and 94% in cytosol, roots, and bacteroids, respectively. In bacteroids, lactate became the most abundant organic acid and might contribute partly to the osmotic adjustment. On the other hand, salt stress induced a large increase in the amino acid and carbohydrate pools. Within the amino acids, proline showed the largest increase, 11.3-, 12.8-, and 8.0-fold in roots, cytosol, and bacteroids, respectively. Its accumulation reflected an osmoregulatory mechanism not only in roots but also in nodule tissue. In parallel, asparagine concentration was greatly enhanced; this amide remained the major nitrogen solute and, in bacteroids, played a significant role in osmoregulation. On the contrary, the salt treatment had a very limited effect on the concentration of other amino acids. Among carbohydrates, pinitol concentration was increased significantly, especially in cytosol and bacteroids (5.4- and 3.4-fold, respectively), in which this cyclitol accounted for more than 35% of the total carbohydrate pool; pinitol might contribute to the tolerance to salt stress. However, trehalose concentration remained low in both nodules and roots; its role in osmoregulation appeared unlikely in alfalfa.  相似文献   

15.
Arthrobacter paraffineus KY 4303, when grown on sucrose as the sole carbon source, produced novel glycolipids, either of which was different from trehalose lipid produced from n-alkane by the same microorganism. Two kinds of glycolipids were isolated by chromatography on silicic acid columns. Major components of these lipids were sucrose and α-branched β-hydroxy fatty acid. One of the lipid (SL–1, having high polarity) was identified as 6-O-monofattyacyl glucosly-β-fructoside. Another (SL–2, having low polarity) was partly characterized as sucrose ester of at least two moles of the fatty acid.

Formation of sucrose lipids was also demonstrated in sucrose-grown cells of several microorganisms of Corynebacteria, Nocardia and Brevibacteria, which were isolated as hydrocarbon-utilizing bacteria and could produce a considerable amount of trehalose lipid from n-alkane.  相似文献   

16.
Chi Z  Liu J  Ji J  Meng Z 《Journal of biotechnology》2003,102(2):135-141
In our previous studies, it was found that Saccharomycopsis fibuligera sdu cells could accumulate 18.0% (gg(-1)) trehalose from soluble starch in SSY medium. However, the yeast strain contained high activities of acid and neutral trehalases, which were reported to mobilize trehalose accumulated by the cells during fermentation. In order to enhance the yield of trehalose, it is necessary to remove the trehalase activities from the cells. By mutagenesis of ethylmethanesulfonate, one mutant that assimilated trehalose very slowly, but grew on other carbon sources as fast as its parent strain, was isolated. In Biostat B2 2-1 fermentation, trehalose accumulation of the mutant was much higher than that of the wild type when grown in YPS medium containing starch. The activities of acid and neutral trehalases of this mutant were much lower than those of the wild type, respectively. We think the reduction of acid and neutral trehalase activities is considered to be responsible for the increased yield of trehalose accumulated by the mutant.  相似文献   

17.
Isolation of glycolipids from Nocardia asteroides, N. farcinica, Gordona lentifragmenta and G. bronchialis, by column chromatography of lipid extracts on a 50% (w/w) mixture of silicic acid and silica gel H, is described. The isolated materials were partially characterized by infrared spectroscopy, optical rotation and refractive index measurements, and by identifying the products of alkaline hydrolysis. Analytical studies showed that the glycolipids released only trehalose in the aqueous phase while mycolic acids were the constituent fatty acids identified.The isolated lipids are trehalose esters in which the trehalose molecule is esterified with mycolic acids.  相似文献   

18.
Trehalose is a non‐reducing disaccharide involved in stress tolerance in plants. To understand better the role of trehalose in the osmotic stress response in linseed (Linum usitatissimum), trehalose content in leaves was studied. First, the method commonly used for sugar determination, high performance anion exchange chromatography with pulsed amperometric detection (HPAEC‐PAD), gave unsatisfactory results and the separation efficiency could not be improved by varying the elution conditions. The same problem was also found in the model plant: Arabidopsis thaliana. After clearly highlighting a co‐elution of trehalose in these two species by a trehalase assay and liquid chromatography‐high resolution mass spectrometry analysis, gas chromatography–mass spectrometry (GC‐MS) was used as the analytical method instead. These results confirmed that trehalose content is currently overestimated by HPAEC‐PAD analysis, approximately 7 and 13 times for A. thaliana and linseed respectively. Thus GC‐MS gave more satisfactory results for trehalose quantification in plants. With this method, trehalose accumulation was observed in linseed during an osmotic stress (?0.30 MPa), the quantity (31.49 nmol g–1 dry weight after 48 h) appears too low to assign an osmoprotector or osmoregulator role to trehalose in stressed linseed.  相似文献   

19.
Trehalose, a common microbial disaccharide, has been reported to be toxic to plants, and plant trehalase has therefore been hypothesized to function as a detoxifying enzyme. To test this, aseptically grown soybean (Glycine max L. Merr.) plantlets were supplied with trehalose. The plants accumulated trehalose only when validamycin A, a potent trehalase inhibitor, was added as well. Under these conditions, they accumulated trehalose to up to 8% of the dry weight in their primary leaves without any detectable impairment of growth or health. We have previously shown that in soybean nodules, trehalose is generated by the symbiotic bacteria, and trehalase is strongly induced. However, direct exposure of plants to trehalose did not affect their trehalase activity, whereas a treatment with auxin strongly increased it, indicating that the enzyme level is regulated by hormones rather than by its substrate. Addition of validamycin A to nodules caused an increase in the amount of trehalose and a decrease in the sucrose and starch pools, but nitrogen fixation was not affected. Similar results were obtained with cowpea (Vigna unguiculata L.) plantlets and nodules. These results indicate that plant trehalase is functional in metabolizing trehalose from exogenous and endogenous sources, even though the disaccharide has no obvious toxic effects.Abbreviations ABA abscisic acid - ARA acetylene-reduction activity (assay for nitrogenase) - 2,4-D 2,4-dichlorophenoxyacetic acid - DW dry weight - FW fresh weight - GA3 gibberellic acid - -NAA, -NAA -,-naphthaleneacetic acid We are indebted to Prof. Dr. W. Broughton (University of Geneva, Switzerland) for kindly providing us cowpea seeds and the symbiont strain Rhizobium sp. NGR 234. Validamycin A was a gift of Dr. J.-P. Métraux, Ciba, Basel. This work was supported by the Swiss National Foundation.  相似文献   

20.
Rhodococcus opacus 1CP, a potent degrader of (chloro-) aromatic compounds was found to utilise C10–C16 n-alkanes as sole carbon sources. Highest conversion rates were observed with n-tetradecane and n-hexadecane, whereas the utilisation of n-dodecane and n-decane was considerably slower. Thin-layer chromatography of organic extracts of n-alkane-grown 1CP cultures indicated the growth-associated formation of a glycolipid which was characterised as a trehalose dimycolate by 1H-NMR spectroscopy and mass spectrometry. Total chain lengths between 48 and 54 carbons classify the fatty acid residues as nocardiomycolic acids. The presence of two double bonds in each mycolic acid is another feature that distinguishes the corresponding trehalose dinocardiomycolates from trehalose dicorynomycolates reported for Rhodococcus erythropolis DSM43215 and Rhodococcus ruber IEGM231. R. opacus 1CP was not found, even under nitrogen limitation, to produce anionic trehalose tetraesters which have previously been reported for R. erythropolis DSM43215.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号