首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
尽管研究证明很多克隆动物存在DNA甲基化异常的情况,却很少有研究比较克隆绵羊与自然分娩绵羊之间的甲基化情况,可能是由于克隆绵羊的获得、绵羊基因组、绵羊基因组印记等因素的限制.本研究中,为了证明克隆绵羊重编程的状况,克隆了Peg3基因的差异甲基化区域(differential methylated region,DMR),并且分析了Peg3、Cdkn1c、Gtl2在克隆绵羊和自然分娩绵羊不同组织中的甲基化水平.研究发现,在克隆绵羊和自然分娩绵羊中Peg3呈现为超甲基化水平,在克隆绵羊的肾脏和肺脏中DNA甲基化水平为95.45%、81.18%,相对于正常分娩的绵羊组织中的98.18%、87.27%无显著性差异,而Cdkn1c在两组实验动物中的肾脏和肺脏中表现为非甲基化水平,分别为0%、0.53%、0.53%和0.53%,Gtl2则是低甲基化水平,并且克隆绵羊与正常分娩绵羊之间的DNA甲基化水平无显著性差异(r~2=0.77).这些结果表明,Peg3、Cdkn1c、Gtl2三个印记基因在克隆绵羊和自然分娩绵羊组织中呈现类似甲基化水平,无显著性差异.  相似文献   

2.
体细胞核移植(体细胞克隆)技术在动物生产、医药工业、治疗性克隆以及对珍稀濒危动物的拯救有重要意义,然而克隆效率低下以及克隆动物发育异常,严重制约了克隆技术的发展和应用.在体细胞核克隆中,供体核来自高度分化了的体细胞,发生在核移植后几小时内供体核的重编程,决定了克隆胚胎的发育能力.印记基因是由等位基因表观遗传修饰的不对称导致的基因表达具有亲本选择性,而DNA甲基化是调控印记的一个主要方式.印记基因Mash2在胚胎发育和器官形成过程中起着非常重要的作用.为了探求核移植过程中Mash2基因DNA 甲基化的表观重编程是否充分,利用亚硫酸氢盐测序法对出生48 h内死亡的体细胞核移植牛和正常对照牛肺脏中Mash2基因的DNA甲基化状态进行分析.结果显示,尽管位于Mash2基因启动子和第一个外显子处的CpG岛在正常牛和克隆牛中甲基化水平都不高(20.04%,5.55%),但克隆组的甲基化水平仍显著低于正常对照组 (P < 0.05).甲基化模式正常组中9N3有5种不同的形式,9N4仅1种;而克隆组9C3和9C5也分别是1种.推测Mash2基因的异常DNA甲基化很可能是导致克隆牛肺脏发育异常的一个重要原因.  相似文献   

3.
石杨  汪梦婷  靳雨璠  于月  张旭  李家豪  姜南  李斌  陈稷  黄进 《广西植物》2022,42(11):1822-1829
多蛋白桥联因子1(multi protein bridging factor 1, MBF1)在植物应对逆境胁迫中起着重要的作用,而对于水稻中MBF1是否参与重金属胁迫响应机制目前尚未见相关报道。为了揭示水稻MBF1家族与重金属胁迫的相关性及其潜在作用机制,该研究利用PCR技术克隆水稻OsMBF1c基因的全长编码序列,通过生物信息学对基因功能进行分析和预测,并通过实时荧光定量PCR(RT-qPCR)分析其在镉(Cd)胁迫下的表达特征。结果表明:(1)OsMBF1c的全长编码序列为468 bp,共编码155个氨基酸,相对分子量为16.154 kDa。(2)OsMBF1c与大麦TdMBF1a.1亲缘关系最近,具有光、厌氧等环境因子诱导相关的顺式调节元件。(3)重金属Cd可诱导OsMBF1c表达且在时间上和组织中的表达水平具有特异性,100 μmol·L-1 Cd 处理1 h 后,地上部分OsMBF1c表达量明显上调,为对照组的7倍; 100 μmol·L-1 Cd 胁迫处理6 h后,根部OsMBF1c表达量上调为对照组的3倍。该研究结果进一步完善了非生物胁迫下MBF1家族的生物学功能研究。  相似文献   

4.
ARF(alternative reading frame)作为INK4a/ARF的β转录产物,能够稳定p53, 诱导细胞周期阻断或凋亡.利用高表达p14ARF的人黑色素瘤细胞模型,探讨了ARF抑制细胞增殖的分子作用机理.研究发现p14ARF高表达能将细胞周期阻断在G1和G2期, p53, p21cip1和p27kip1蛋白水平明显增强, 而p-ERK1/2,CyclinD1和CyclinE蛋白水平下降, 明显抑制细胞生长. 提示p14ARF能通过ERK(extracellular signal-regulated kinase)信号通路相互协调作用抑制A375细胞增殖.  相似文献   

5.
AtNHX2基因是拟南芥NHX基因家族的一员,编码了一种液泡膜中的Na+/H+反向运输体并对拟南芥的耐盐能力起着重要的作用.采用PCR扩增的方法克隆了拟南芥AtNHX2基因启始密码子上游约2.8 kb的DNA片段,并将其克隆到植物表达载体pCAMBIA1301-1中,通过基因枪轰击洋葱表皮瞬时表达的方法,初步检测启动子的活性.将重组质粒pCAMBIA1301-1/AtNHX2 promoter转化拟南芥并筛选纯合子.AtNHX2 promoter-GUS分析显示AtNHX2在所有的组织中均有表达,包括根尖.在保卫细胞中检测到了强烈的GUS表达,这一结果表明,AtNHX2对特殊细胞的pH调控和K+自身稳定方面起着重要的作用.AtNHX2启动子的活性可被NaCl抑制,并且抑制的强度和NaCl的浓度成正相关. 300 mmol/L KCl处理可增强启动子的活性,说明NaCl和KCl是在转录水平上调控AtNHX2的表达.在老叶中GUS活性比在新叶中GUS活性强,这说明了AtNHX2优先将有毒的离子积累在老叶中,从而有利于植物的正常发育.在根毛细胞中也观测到了强烈的GUS活性,这就暗示了AtNHX2在扩大的液泡中储存Na+.  相似文献   

6.
二氢嘧啶脱氢酶基因(DPYD基因)所编码的二氢嘧啶脱氢酶(DPD酶)是氟化嘧啶类抗肿瘤药物代谢的主要限速酶,其活性存在显著的个体差异,并因此影响药物的疗效和毒副作用.大部分编码低/无活性酶的突变型等位基因是由于基因中的单核苷酸多态性(single nucleotide polymorphism,SNP)造成的,检测这些SNPs是预测患者对药物的反应和实现个体化给药方案的基础.制备并优化了用于检测DPYD基因中6个已知SNPs所编码的等位基因(DPYD*2,*3,*4,*5,*9,*12)的基因芯片,建立了该芯片的基因分型标准.并利用该芯片检测了肿瘤患者(112例)、肾病患者(83例)和健康者(45例)中DPYD突变型等位基因的发生频率.在受试人群中,突变型等位基因DPYD*5和DPYD*9平均发生率分别为32.08%和11.25%,未发现DPYD*2,*3,*4,*12突变型等位基因.而且以上单碱基突变的发生率在肿瘤患者、肾病患者和健康者间以及男性、女性肿瘤患者间无显著性差异,表明其与疾病的发生或性别无显著性关联.对20例标本的基因分型结果采用直接测序法进行验证,19例基因芯片分型结果与直接测序法结果相一致.DPYD*5、DPYD*9突变型等位基因在受试人群中具有较高的发生率.利用基因芯片能够对其实现快速准确的检测.  相似文献   

7.
LRRC4是一个新发现的胶质瘤抑瘤基因,它在多种胶质瘤细胞系和胶质瘤组织表达缺失或下调,前期研究结果表明胶质瘤细胞和组织中LRRC4的编码区未发生突变、缺失或重排.为了获得LRRC4作为胶质瘤抑瘤基因的进一步证据,采用去甲基化制剂5-Aza-CdR处理LRRC4表达缺失的SF126和SF767胶质瘤细胞,MSP和RT-PCR检测表明,LRRC4的启动子在表达缺失的SF126和SF767细胞存在完全的甲基化,而5-Aza-CdR能逆转LRRC4启动子的甲基化状态,恢复LRRC4的表达.MTT法测定显示,5-Aza-CdR使SF126和SF767胶质瘤细胞增殖受到明显抑制,并呈时间和剂量的依赖性.同时流式细胞仪检测显示,5-Aza-CdR使SF126和SF767胶质瘤细胞周期阻滞于G0/G1期.因此,5-Aza-CdR能抑制胶质瘤细胞SF126和SF767增殖并干扰其细胞周期,LRRC4启动子异常甲基化是其在胶质瘤细胞中表达缺失的重要机制,5-Aza-CdR能逆转LRRC4基因的甲基化,恢复LRRC4的表达,为LRRC4作为胶质瘤去甲基化治疗的靶标提供了科学依据.  相似文献   

8.
【背景】细菌应对环境压力的能力对其存活和增殖及引起感染具有重要意义。充分揭示布鲁氏菌应激机制,可为防控布鲁氏菌病提供理论依据。研究发现,ycjX基因在细菌热应激时高表达且可能受σ32调节,ycjF基因在细菌败血症期间表达显著上升,二者在革兰阴性菌中可能构成操纵子。【目的】研究ycjXycjF基因在布鲁氏菌热应激中的作用。【方法】对布鲁氏菌(Brucella)及其ycjXycjF双基因缺失株(△ycjXF)和回补株(C△ycjXF)进行热应激试验,计算3株菌的存活率。利用RT-PCR和β-半乳糖苷酶活性检测试验鉴定ycjXycjF的操纵子模式和启动子区域活性。利用ChIP试验分析σ32ycjXycjF的靶向调节关系。表达并纯化pGEX-4T-1-σ32重组蛋白,凝胶电泳迁移试验分析σ32ycjXycjF之间的结合关系。【结果】热刺激后△ycjXF存活显著低于Brucella suis S2和C△ycjXF。明确布鲁氏菌ycjXycjF为同一转录本,确定其启动子区域具有活性。ChIP试验表明,σ32可靶向富集在ycjXF启动子区,凝胶电泳迁移试验确定σ32可与ycjXF体外直接结合。【结论】在σ32的调节下,ycjXycjF在布鲁氏菌热应激中发挥正向作用。  相似文献   

9.
cry3Avhb基因在转基因马铃薯中的表达   总被引:4,自引:0,他引:4       下载免费PDF全文
分别构建了含cry3Acry3A+vhb基因的植物表达载体pBCry3A和pBC3Vhb,并通过根癌农杆菌介导转化了马铃薯. 对转化再生植株进行PCR和DNA印迹分析表明,外源基因已整合到马铃薯基因组中, 且连续三代无性繁殖后转基因仍存在. ELISA分析表明cry3A基因在转基因植株中得到了高效表达, 在单转cry3A植株中最高表达量达0.1%, 转cry3Avhb双基因株系中为0.065%. 水涝试验显示,转双基因且vhb mRNA的RT-PCR呈阳性的马铃薯植株,对低氧胁迫有较好的耐受性, 表明获得的上述转双基因马铃薯株系可能会具有很好的抗虫和耐涝性能.  相似文献   

10.
该研究以菘蓝叶片为材料,采用RT PCR方法克隆菘蓝IiCYP79F1基因,并对其进行生物信息学与表达模式分析。结果表明:(1)成功获得IiCYP79F1基因的gDNA全长(2 109 bp),包含3个外显子及2个内含子,ORF全长为1 626 bp,编码541个氨基酸(GenBank登录号为KY774689.1);生物信息学分析显示,IiCYP79F1蛋白的二级结构主要由α 螺旋(43.81%)、无规则卷曲(35.49%)、延伸链(13.68%)和β 转角(7.02%)组成;其氨基酸序列与西兰花、欧洲油菜、芜菁和芝麻菜的相似性较高,其蛋白与芝麻菜的亲缘关系最近。(2)qRT PCR分析显示,IiCYP79F1基因呈时空特异性表达,且在茎中与幼苗期高表达;MeJA、Ag+、葡萄糖和机械损伤处理均能有效促进IiCYP79F1基因的表达,而SA和低温处理则具有明显的抑制作用。该研究结果为进一步探讨IiCYP79F1在菘蓝芥子油苷生物合成中的作用奠定了基础,也为培育高芥子油苷含量的菘蓝新种质提供了新思路。  相似文献   

11.
《Epigenetics》2013,8(8):1012-1020
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.  相似文献   

12.
The monoallelic expression of imprinted genes is controlled by epigenetic factors including DNA methylation and histone modifications. In mouse, the imprinted gene Gtl2 is associated with two differentially methylated regions: the IG-DMR, which serves as a gametic imprinting mark at which paternal allele-specific DNA methylation is inherited from sperm, and the Gtl2-DMR, which acquires DNA methylation on the paternal allele after fertilization. The timeframe during which DNA methylation is acquired at secondary DMRs during post-fertilization development and the relationship between secondary DMRs and imprinted expression have not been well established. In order to better understand the role of secondary DMRs in imprinting, we examined the methylation status of the Gtl2-DMR in pre- and post-implantation embryos. Paternal allele-specific DNA methylation of this region correlates with imprinted expression of Gtl2 during post-implantation development but is not required to implement imprinted expression during pre-implantation development, suggesting that this secondary DMR may play a role in maintaining imprinted expression. Furthermore, our developmental profile of DNA methylation patterns at the Cdkn1c- and Gtl2-DMRs illustrates that the temporal acquisition of DNA methylation at imprinted genes during post-fertilization development is not universally controlled.Key words: genomic imprinting, DNA methylation, Gtl2, secondary DMR, epigenetics  相似文献   

13.
《Epigenetics》2013,8(3):214-221
Parent-of-origin specific expression of imprinted genes relies on the differential DNA methylation of specific genomic regions. Differentially methylated regions (DMRs) acquire DNA methylation either during gametogenesis (primary DMR) or after fertilisation when allele-specific expression is established (secondary DMR). Little is known about the function of these secondary DMRs. We investigated the DMR spanning Cdkn1c in mouse embryonic stem cells, androgenetic stem cells and embryonic germ stem cells. In all cases, expression of Cdkn1c was appropriately repressed in in vitro differentiated cells. However, stem cells failed to de novo methylate the silenced gene even after sustained differentiation. In the absence of maintained DNA methylation (Dnmt1-/-), Cdkn1c escapes silencing demonstrating the requirement for DNA methylation in long term silencing in vivo. We propose that postfertilisation differential methylation reflects the importance of retaining single gene dosage of a subset of imprinted loci in the adult.  相似文献   

14.
In different mammalian species, in vitro culture and manipulation can lead to aberrant fetal and peri-natal development. It has been postulated that these diverse abnormalities are caused by epigenetic alterations and that these could affect genes that are regulated by genomic imprinting. To explore this hypothesis relative to somatic cell nuclear transfer in sheep, we investigated whether the ovine H19-IGF2 and IGF2R loci are imprinted and analysed their DNA methylation status in cloned lambs. A comparison between parthenogenetic and control concepti established that imprinting at these two growth-related loci is evolutionarily conserved in sheep. As in humans and mice, IGF2R and H19 comprise differentially methylated regions (DMRs) that are methylated on one of the two parental alleles predominantly. In tongue tissue from 12 out of 13 cloned lambs analysed, the DMR in the second intron of IGF2R had strongly reduced levels of DNA methylation. The DMR located upstream of the ovine H19 gene was found to be similarly organised as in humans and mice, with multiple CTCF binding sites. At this DMR, however, aberrant methylation was observed in only one of the cloned lambs. Although the underlying mechanisms remain to be determined, our data indicate that somatic cell nuclear transfer procedures can lead to epigenetic deregulation at imprinted loci.  相似文献   

15.
Zhao L  Zhao G  Xi H  Liu Y  Wu K  Zhou H 《Molecular biology reports》2011,38(5):3495-3504
Peg10 is a maternally imprinted gene located in the imprinted domain of human chromosome 7q21 and mouse proximal chromosome 6. It is predominantly expressed in, and participates in the formation of, the placenta. Moreover, Peg10 is overexpressed in hepatocellular carcinoma, and is involved in hepatocarcinogenesis. The large noncoding RNA Xist has been shown to direct the female mammalian X chromatosome dosage compensation pathway. In the present study, we obtained partial cDNA sequences of sheep Peg10 and Xist. mRNA expression analysis in nine organs showed that they were universally expressed in two-day old lambs. The mRNA expression profile of Peg10 showed similar tissue specificity to pig, but was different compared with human and mouse. We concluded that the Peg10 mRNA expression profile was species specific. However, there was little difference in Xist expression between nine tissues of female lambs. Using bisulfite sequencing, we revealed that the first exon of Xist was either completely methylated or completely unmethylated, indicating that the newly obtained fragment of Xist was also differentially methylated in sheep as the DMR of Peg10. We did not find tissue specific DNA methylation of Xist, consistent with the Xist mRNA expression profile.  相似文献   

16.
Liu JH  Zhu JQ  Liang XW  Yin S  Ola SI  Hou Y  Chen DY  Schatten H  Sun QY 《Genomics》2008,91(2):121-128
Epigenetic modifications are closely associated with embryo developmental potential. One of the epigenetic modifications thought to be involved in genomic imprinting is DNA methylation. Here we show that the maternally imprinted genes Snrpn and Peg1/Mest were nearly unmethylated or heavily methylated, respectively, in their differentially methylated regions (DMRs) at the two-cell stage in parthenogenetic embryos. However, both genes were gradually de novo methylated, with almost complete methylation of all CpG sites by the morula stage in parthenogenetic embryos. Unexpectedly, another maternally imprinted gene, Peg3, showed distinct dynamics of methylation during preimplantation development of diploid parthenogenetic embryos. Peg3 showed seemingly normal methylation patterns at the two-cell and morula stages, but was also strongly de novo methylated in parthenogenetic blastocysts. In contrast, the paternally imprinted genes H19 and Rasgrf1 showed complete unmethylation of their DMRs at the morula stage in parthenogenetic embryos. These results indicate that diploid parthenogenetic embryos adopt a maternal-type methylation pattern on both sets of maternal chromosomes and that the aberrantly homogeneous status of methylation imprints may partially account for developmental failure.  相似文献   

17.
The parent-of-origin specific expression of imprinted genes relies on DNA methylation of CpG-dinucleotides at differentially methylated regions (DMRs) during gametogenesis. To date, four paternally methylated DMRs have been identified in screens based on conventional approaches. These DMRs are linked to the imprinted genes H19, Gtl2 (IG-DMR), Rasgrf1 and, most recently, Zdbf2 which encodes zinc finger, DBF-type containing 2. In this study, we applied a novel methylated-DNA immunoprecipitation-on-chip (meDIP-on-chip) method to genomic DNA from mouse parthenogenetic- and androgenetic-derived stem cells and sperm and identified 458 putative DMRs. This included the majority of known DMRs. We further characterized the paternally methylated Zdbf2/ZDBF2 DMR. In mice, this extensive germ line DMR spanned 16 kb and possessed an unusual tripartite structure. Methylation was dependent on DNA methyltransferase 3a (Dnmt3a), similar to H19 DMR and IG-DMR. In both humans and mice, the adjacent gene, Gpr1/GPR1, which encodes a G-protein-coupled receptor 1 protein with transmembrane domain, was also imprinted and paternally expressed. The Gpr1-Zdbf2 domain was most similar to the Rasgrf1 domain as both DNA methylation and the actively expressed allele were in cis on the paternal chromosome. This work demonstrates the effectiveness of meDIP-on-chip as a technique for identifying DMRs.  相似文献   

18.
Unusual clusters of YY1 binding sites are located within several differentially methylated regions (DMRs), including Xist, Nespas and Peg3, which all become methylated during oogenesis. In this study, we performed conditional YY1 knockdown (KD) to investigate YY1''s roles in DNA methylation of these DMRs. Reduced levels of YY1 during spermatogenesis did not cause any major change in these DMRs although the same YY1 KD caused hypermethylation in these DMRs among a subset of aged mice. However, YY1 KD during oogenesis resulted in the loss of DNA methylation on Peg3 and Xist, but there were no changes on Nespas and H19. Continued YY1 KD from oogenesis to the blastocyst stage caused further loss in DNA methylation on Peg3. Consequently, high incidents of lethality were observed among embryos that had experienced the reduced levels of YY1 protein. Overall, the current study suggests that YY1 likely plays a role in the de novo DNA methylation of the DMRs of Peg3 and Xist during oogenesis and also in the maintenance of unmethylation status of these DMRs during spermatogenesis.  相似文献   

19.
Dlk1 and Gtl2 are reciprocally expressed imprinted genes located on mouse chromosome 12. The Dlk1-Gtl2 locus carries three differentially methylated regions (DMRs), which are methylated only on the paternal allele. Of these, the intergenic (IG) DMR, located 12 kb upstream of Gtl2, is required for proper imprinting of linked genes on the maternal chromosome, while the Gtl2 DMR, located across the promoter of the Gtl2 gene, is implicated in imprinting on both parental chromosomes. In addition to DNA methylation, modification of histone proteins is also an important regulator of imprinted gene expression. Chromatin immunoprecipitation was therefore used to examine the pattern of histone modifications across the IG and Gtl2 DMRs. The data show maternal-specific histone acetylation at the Gtl2 DMR, but not at the IG DMR. In contrast, only low levels of histone methylation were observed throughout the region, and there was no difference between the two parental alleles. An existing mouse line carrying a deletion/insertion upstream of Gtl2 is unable to imprint the Dlk1-Gtl2 locus properly and demonstrates loss of allele-specific methylation at the Gtl2 DMR. Further analysis of these animals now shows that the loss of allele-specific methylation is accompanied by increased paternal histone acetylation at the Gtl2 DMR, with the activated paternal allele adopting a maternal acetylation pattern. These data indicate that interactions between DNA methylation and histone acetylation are involved in regulating the imprinting of the Dlk1-Gtl2 locus.  相似文献   

20.
Timing of establishment of paternal methylation imprints in the mouse   总被引:10,自引:0,他引:10  
Li JY  Lees-Murdock DJ  Xu GL  Walsh CP 《Genomics》2004,84(6):2094-960
Imprinted genes are characterized by predominant expression from one parental allele and differential DNA methylation. Few imprinted genes have been found to acquire a methylation mark in the male germ line, however, and only one of these, H19, has been studied in detail. We examined methylation of the Rasgrf1 and Gtl2 differentially methylated regions (DMR) to determine whether methylation is erased in male germ cells at e12.5 and when the paternal allele acquires methylation. We also compared their methylation dynamics with those of H19 and the maternally methylated gene Snrpn. Our results show that methylation is erased on Rasgrf1, H19, and Snrpn at e12.5, but that Gtl2 retains substantial methylation at this stage. Erasure of methylation marks on Gtl2 appears to occur later in female germ cells to give the unmethylated profile seen in mature MII oocytes. In the male germ line, de novo methylation of Rasgrf1, Gtl2, and H19 occurs in parallel between e12.5 and e17.5, but the DMR are not completely methylated until the mature sperm stage, suggesting a methylation dynamic different from that of IAP, L1, and minor satellite sequences, which have been shown to become fully methylated by e17.5 in male germ cells. This study also indicates important differences between different imprinted DMR in timing and extent of methylation in the germ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号