首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
INK4a/ARF基因位于人染色体9p21,是人类肿瘤中最常见的基因失活位点之一.INK4a/ARF基因有两套各自独立的启动子,通过可变阅读框,能够编码两种蛋白质:p16INK4a和p14ARF(ARF在鼠细胞中为p19ARF).p16作为CDK4/6的抑制因子,能够阻断pRb磷酸化,将细胞周期阻断在G1期;而ARF可结合原癌蛋白MDM2,稳定p53,将细胞周期阻断在G1期和G2/M转换期,或诱导细胞凋亡.因此ARF蛋白和p16一样也是一种肿瘤抑制因子.  相似文献   

2.
P14ARF对人黑色素瘤细胞增殖的影响及其作用机理的初探   总被引:3,自引:0,他引:3  
ARF(alternative reading frame)作为INK4a/ARF的β转录产物,能够稳定p53,诱导细胞周期阻断或凋亡.利用高表达p14ARF的人黑色素瘤细胞模型,探讨了ARF抑制细胞增殖的分子作用机理.研究发现p14ARF高表达能将细胞周期阻断在G1和G2期,p53,p2lcipl和p27kipl蛋白水平明显增强,而p-ERK1/2,CyclinDl和CyclinE蛋白水平下降,明显抑制细胞生长.提示p14ARF能通过ERK(extracellular signal-regulated kinase)信号通路相互协调作用抑制A375细胞增殖.  相似文献   

3.
neu基因编码一种和表皮生长因子受体同源的磷酸蛋白,具有酪氨酸激酶的活性.近年来在多种人类肿瘤中发现neu基因的扩增和(或)过量表达.一些蛋白质因子或化学药物可以在转录水平阻遏neu基因的过量表达或者降低其产物p185neu的酪氨酸激酶活性,抑制具有neu基因过量表达的癌细胞的转移和增殖.  相似文献   

4.
p16INK4a基因的功能及其调控   总被引:1,自引:0,他引:1  
p16INK4a蛋白能抑制CDK4和CDK6的活性,使pRb处于非磷酸化或低磷酸化状态而能与转录因子E2Fs结合,从而抑制DNA 的合成,阻止细胞由G1期进入S期.p16INK4a的表达受Ets1和Ets2的正调控,受Bmi-1的负调控.p16INK4a基因缺失、突变、甲基化、RNA剪接加工错误可导致细胞周期失控和癌变.应用p16INK4a对某些肿瘤进行基因治疗的研究正在进行中.  相似文献   

5.
前列腺素A2(PGA2)具有强的体内、外抗增殖活性,引起细胞周期阻滞,同时,可诱导cdk抑制物p21蛋白的表达,后者亦可介导多种细胞的G1阻滞.提示p21waf1/cip1在PGA2诱导的细胞周期阻滞中具有重要作用.主要介绍了近两年来有关p21waf1/cip1与转录因子E2F间的相互作用的研究,阐述p21waf1/cip1在PGA2介导的细胞周期阻滞中的作用机制.  相似文献   

6.
p21WAF1在丁酸钠诱导的人成纤维细胞凋亡中的表现   总被引:3,自引:2,他引:1  
用丁酸钠(NaBu)诱导了人胚肺二倍体成纤维细胞凋亡(2BS),检测其诱导过程中凋亡相关基因的表达变化,结果表明,p21WAF1的表达在凋亡发生前即有明显下降,并持续至凋亡发生时, bcl-2的表达仅在凋亡发生时有所下降,c-myc和c-fos的表达有所上升,而p53和HER-2的表达无明显变化.用稳定转染了不同长度p21WAF1启动子片段和下游绿色荧光蛋白(GFP)报告基因的2BS-WP系列细胞进一步研究发现,其GFP的表达水平在NaBu诱导过程中下降,主要调控区域为p21WAF1启动子的TATA box上游0~-800 bp.说明NaBu诱导的人胚肺二倍体成纤维细胞凋亡与p21WAF1启动子的转录活性下降与密切相关,并且可能不依赖于p53.  相似文献   

7.
LRRC4是一个新发现的胶质瘤抑瘤基因,它在多种胶质瘤细胞系和胶质瘤组织表达缺失或下调,前期研究结果表明胶质瘤细胞和组织中LRRC4的编码区未发生突变、缺失或重排.为了获得LRRC4作为胶质瘤抑瘤基因的进一步证据,采用去甲基化制剂5-Aza-CdR处理LRRC4表达缺失的SF126和SF767胶质瘤细胞,MSP和RT-PCR检测表明,LRRC4的启动子在表达缺失的SF126和SF767细胞存在完全的甲基化,而5-Aza-CdR能逆转LRRC4启动子的甲基化状态,恢复LRRC4的表达.MTT法测定显示,5-Aza-CdR使SF126和SF767胶质瘤细胞增殖受到明显抑制,并呈时间和剂量的依赖性.同时流式细胞仪检测显示,5-Aza-CdR使SF126和SF767胶质瘤细胞周期阻滞于G0/G1期.因此,5-Aza-CdR能抑制胶质瘤细胞SF126和SF767增殖并干扰其细胞周期,LRRC4启动子异常甲基化是其在胶质瘤细胞中表达缺失的重要机制,5-Aza-CdR能逆转LRRC4基因的甲基化,恢复LRRC4的表达,为LRRC4作为胶质瘤去甲基化治疗的靶标提供了科学依据.  相似文献   

8.
为了探讨细胞周期抑制因子p19ARF对人二倍体细胞复制性衰老的影响, 构建了重组p19ARF真核表达载体, 并通过脂质体的介导将p19ARF基因转染到人二倍体成纤维细胞WI-38中过表达, 观察其对WI-38细胞衰老的影响. 结果发现与对照细胞相比, 在p19ARF基因导入后, 细胞中p53和p21的表达水平明显上调, 细胞传代数减少10~12代, 生长速率降低, 细胞周期阻滞于G1期, 衰老标志物SA-β-gal染色阳性率上升, 线粒体膜电位下降, 细胞形态呈衰老细胞样变化, 这些结果表明p19ARF高表达可促进人二倍体细胞的衰老进程.  相似文献   

9.
研究ABCE1对肺癌(95-D和 NCI-H446)细胞的作用.使用RNA干扰技术,抑制ABCE1基因的表达,通过Western blot 分析及FACS检测,观察ABCE1基因对E-钙黏附蛋白在95-D/NCI-H446细胞表达的影响;运用transwell 侵袭实验,观察M95-D/ NCI-H446细胞侵袭力的变化.RNA干扰ABCE1基因后,实验组与对照组相比,在48 h后可显著抑制肺癌(95-D和 NCI-H446)细胞ABCE1蛋白的表达,同时,伴随E-钙黏附蛋白的高表达,以及细胞侵袭力的降低. ABCE1基因与E-钙黏附蛋白相关,抑制ABCE1基因可增加肺癌95-D/NCI-H446细胞的E-钙黏附蛋白的表达,减低细胞的侵袭力.  相似文献   

10.
AtNHX2基因是拟南芥NHX基因家族的一员,编码了一种液泡膜中的Na+/H+反向运输体并对拟南芥的耐盐能力起着重要的作用.采用PCR扩增的方法克隆了拟南芥AtNHX2基因启始密码子上游约2.8 kb的DNA片段,并将其克隆到植物表达载体pCAMBIA1301-1中,通过基因枪轰击洋葱表皮瞬时表达的方法,初步检测启动子的活性.将重组质粒pCAMBIA1301-1/AtNHX2 promoter转化拟南芥并筛选纯合子.AtNHX2 promoter-GUS分析显示AtNHX2在所有的组织中均有表达,包括根尖.在保卫细胞中检测到了强烈的GUS表达,这一结果表明,AtNHX2对特殊细胞的pH调控和K+自身稳定方面起着重要的作用.AtNHX2启动子的活性可被NaCl抑制,并且抑制的强度和NaCl的浓度成正相关. 300 mmol/L KCl处理可增强启动子的活性,说明NaCl和KCl是在转录水平上调控AtNHX2的表达.在老叶中GUS活性比在新叶中GUS活性强,这说明了AtNHX2优先将有毒的离子积累在老叶中,从而有利于植物的正常发育.在根毛细胞中也观测到了强烈的GUS活性,这就暗示了AtNHX2在扩大的液泡中储存Na+.  相似文献   

11.
p14(ARF), the alternative product from the human INK4a/ARF locus, is one of the major targets for alterations in the development of human cancers. Overexpression of p14(ARF) results in cell cycle arrest and apoptosis. To examine the potential therapeutic role of re-expressing p14(ARF) gene product in human breast cancer, a recombinant adenovirus expressing the human p14(ARF) cDNA (Adp14(ARF)) was constructed and used to infect breast cancer cells. Five days after infection, Adp14(ARF) had considerable cytotoxicity on p53-wild-type MCF-7 cells. A time-course study showed that Adp14(ARF) infection of MCF-7 cells at 100pfu/cell increased the number of cells in G0/G1 phase and decreased that in S and G2/M phases. The presence of apoptotic cells was confirmed using the TUNEL assay. Adp14(ARF)-mediated expression of p14(ARF) also resulted in a considerable increase in the amounts of p53 and its target proteins, p21(WAF1) and MDM2. Furthermore, the combination treatment of MCF-7 cells with Adp14(ARF) and cisplatin resulted in a significantly greater cell death. Together, we conclude that p14(ARF) plays an important role in the induction of cell cycle arrest and apoptosis in breast cancer cells and recombinant adenovirus-mediated p14(ARF) expression greatly increases the sensitivity of these cells to cisplatin. These results demonstrate that the proper combination of Adp14(ARF) with conventional chemotherapeutic drug(s) could have potential benefits in treating breast cancer that carries wild-type p53 gene.  相似文献   

12.
The p14ARF protein is a well‐known regulator of p53‐dependent and p53‐independent tumor‐suppressive activities. In unstressed cells, p14ARF is predominantly sequestered in the nucleoli, bound to its nucleolar interaction partner NPM. Upon genotoxic stress, p14ARF undergoes an immediate redistribution to the nucleo‐ and cytoplasm, where it promotes activation of cell cycle arrest and apoptosis. Here, we identify p14ARF as a novel interaction partner and substrate of PRMT1 (protein arginine methyltransferase 1). PRMT1 methylates several arginine residues in the C‐terminal nuclear/nucleolar localization sequence (NLS/NoLS) of p14ARF. In the absence of cellular stress, these arginines are crucial for nucleolar localization of p14ARF. Genotoxic stress causes augmented interaction between PRMT1 and p14ARF, accompanied by arginine methylation of p14ARF. PRMT1‐dependent NLS/NoLS methylation promotes the release of p14ARF from NPM and nucleolar sequestration, subsequently leading to p53‐independent apoptosis. This PRMT1‐p14ARF cooperation is cancer‐relevant and indicative for PDAC (pancreatic ductal adenocarcinoma) prognosis and chemotherapy response of pancreatic tumor cells. Our data reveal that PRMT1‐mediated arginine methylation is an important trigger for p14ARF’s stress‐induced tumor‐suppressive function.  相似文献   

13.
14.
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33ING1 (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33ING1 mediates UV-induced cell death in melanoma cells. We found that overexpression of p33ING1 increased while the introduction of an antisense p33ING1 plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33ING1 required the presence of p53. Moreover, we found that p33ING1 enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33ING1 cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells.  相似文献   

15.
To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell, recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression. Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results re- vealed that, compared with control cells, the WI-38 cells in which p19ARF gene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10 12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells. These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.  相似文献   

16.
The INK4a/ARF locus, which is frequently inactivated in human tumors, encodes two distinct tumor suppressive proteins, ARF and p16INK4a. ARF stabilizes and activates p53 by negating the effects of mdm2 on p53. Furthermore, its function is not restricted to the p53 pathway and it also inhibits cell proliferation in cells lacking p53. Expression of ARF is up-regulated in response to a number of oncogenic stimuli including E2F1. We show here that while oncogenic Ras does not significantly affect p14ARF expression in normal human cells it activates p14ARF in cells containing deregulated E2F. Moreover, oncogenic Ras and E2F1 synergize in activating p14ARF expression. Activation of p14ARF promoter by E2F1 persists in the absence of the consensus E2F-binding sites in this promoter, indicating that this activation also occurs through non- canonical binding sites. The activation by oncogenic Ras requires both E2F and Sp-1 activity, demonstrating the complex regulation of p14ARF in response to oncogenic stimuli.  相似文献   

17.
18.
19.
p21WAF1 is a well-characterized mediator of cell cycle arrest and may also modulate chemotherapy-induced cell death. The role of p21WAF1 in drug-induced cell cycle arrest and apoptosis of acute lymphoblastic leukemia (ALL) cells was investigated using p53-functional patient-derived xenografts (PDXs), in which p21WAF1 was epigenetically silenced in T-cell ALL (T-ALL), but not in B-cell precursor (BCP)-ALL PDXs. Upon exposure to diverse cytotoxic drugs, T-ALL PDX cells exhibited markedly increased caspase-3/7 activity and phosphatidylserine (PS) externalization on the plasma membrane compared with BCP-ALL cells. Despite dramatic differences in apoptotic characteristics between T-ALL and BCP-ALL PDXs, both ALL subtypes exhibited similar cell death kinetics and were equally sensitive to p53-inducing drugs in vitro, although T-ALL PDXs were significantly more sensitive to the histone deacetylase inhibitor vorinostat. Transient siRNA suppression of p21WAF1 in the BCP-ALL 697 cell line resulted in a moderate depletion of the cell fraction in G1 phase and marked increase in PS externalization following exposure to etoposide. Furthermore, stable lentiviral p21WAF1 silencing in the BCP-ALL Nalm-6 cell line accelerated PS externalization and cell death following exposure to etoposide and vorinostat, supporting previous findings. Finally, the Sp1 inhibitor, terameprocol, inhibited p21WAF1 expression in Nalm-6 cells exposed to vorinostat and also partially augmented vorinostat-induced cell death. Taken together, these findings demonstrate that p21WAF1 regulates the early stages of drug-induced apoptosis in ALL cells and significantly modulates their sensitivity to vorinostat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号