首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In laboratory experiments, the rhizobacteria Azospirillum lipoferum 137, Arthrobacter mysorens7, Agrobacterium radiobacter 10, and Flavobacterium sp. L30 were found to have a relatively high resistance to the toxic heavy metals lead and cadmium (except that strain L30 was found to be sensitive to Cd). When introduced by means of seed bacterization, the heavy metal–resistant strains actively colonized the rhizosphere of barley plants cultivated in uncontaminated and contaminated soils. In both pot and field experiments, seed bacterization improved the growth of barley plants and the uptake of nutrient elements from soil contaminated with Pb and Cd. The bacterization also prevented the accumulation of Pb and Cd in barley plants, thereby mitigating the toxic effect of these heavy metals on the plants.  相似文献   

2.
A comprehensive understanding of the uptake, tolerance, and transport of heavy metals by plants will be essential for the development of phytoremediation technologies. In the present paper, we investigated accumulation, tissue and intracellular localization, and toxic effects of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in three aquatic macrophytes (the angiosperms Lemna minor and Elodea canadensis, and the moss Leptodictyum riparium). We also tested and compared their capacity to absorb heavy metal from water under laboratory conditions. Our data showed that all the three species examined could be considered good bioaccumulators for the heavy metals tested. L. riparium was the most resistant species and the most effective in accumulating Cu, Zn, and Pb, whereas L. minor was the most effective in accumulating Cd. Cd was the most toxic metal, followed by Pb, Cu, and Zn. At the ultrastructural level, sublethal concentrations of the heavy metals tested caused induced cell plasmolysis and alterations of the chloroplast arrangement. Heavy metal removal experiments revealed that the three macrophytes showed excellent performance in removing the selected metals from the solutions in which they are maintained, thus suggesting that they could be considered good candidates for wastewaters remediation purpose.  相似文献   

3.
A limiting factor in land application of sewage sludge is the resultant heavy metal accumulation in soils followed by biomagnification in the food chain, posing a potential hazard to animal and human health. In view of this fact, pot experiments were conducted to evaluate the effect of digested sludge application to soil on phytotoxicity of heavy metals such as Cd, Cr, Ni, and Pb to radish (Raphanus sativus L.) plants. Increasing sludge levels resulted in increased levels of DTPA-extractable heavy metals in the soil. Cadmium was the dominant metal extracted by DTPA followed by Ni, Pb, and Cr. The extractability of metals by DTPA tended to decrease from the first to the second crop. Dry matter yield of radish increased significantly as a function of increasing sludge treatments. Soil application of sludge raised the concentration of one or more heavy metals in plants. Shoots contained higher concentrations of Cd, Cr, and Ni than the roots of radish plants. Shoot concentrations of Cd, Cr, Ni, and Pb were within the tolerance levels of this crop at all rates of sludge application. Shoot as well as root concentration of Cd was above 0.5 mg kg?1, considered toxic for human and animal consumption. The levels of DTPA-extractable Cd and Ni were less correlated while those of Cr and Pb were more correlated with their respective shoot and root contents. The results emphasize that accumulation of potentially toxic heavy metals in soil and their build-up in vegetable crops should not be ignored when sludge is applied as an amendment to land.  相似文献   

4.
菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响   总被引:62,自引:6,他引:56  
采用根垫法和连续形态分析技术,分析了生长在污灌土壤中菌根小麦和无菌根小麦根际Cu、Zn、Pb、Cd的形态分布和变化趋势。结果表明,下对照土壤相比,菌根际土壤中交换态Cu含量显著增加,交换态Cd呈减少的趋势;与非菌根际相比,Cu、Zn、Pb的有机结合态在菌根根际中显著增加,而4种测定金属2的碳酸盐态和铁锰氧化态都没有显著改变,该结果表明,植物根系能影响根际中金属形态的变化,且菌根比无菌根的影响程度大  相似文献   

5.
Exposure of plants to heavy metals severely affects their growth and physiological processes. Nevertheless, different plants show variable responses to different heavy metals, generally in a concentration-dependent manner. In this study, phytotoxic effects of cadmium (Cd), cobalt (Co) and lead (Pb) applied as chlorides at concentration 500, 750, 1000 and 1250 ppm were evaluated on seed germination, early seedling growth and dry biomass of pea (Pisum sativum L.). A lower concentration (500 ppm) of Pb promoted seed germination but declined other growth parameters. Higher concentration had a phytotoxic influence on the pea. Cd and Co severely affected germination and seedling growth of pea resulting in complete failure of germination and seedling growth at higher metal concentration. Tolerance index (TI) calculated for seed germination and dry biomass indicated that tested plant had zero tolerance to 1250 ppm of Cd as well as 750 ppm and higher concentrations of Co. The order of heavy metals for their phytotoxic effects was Co > Cd > Pb. The study suggests that P. sativum is relatively tolerant to Pb but highly sensitive to Co and Cd.  相似文献   

6.
利用乙二胺四乙酸淋洗修复重金属污染的土壤及其动力学   总被引:32,自引:0,他引:32  
通过室内模拟试验,采用振荡淋洗的方法研究了乙二胺四乙酸(EDTA)浓度、pH、淋洗时间对重金属去除效果的影响.利用一级反应动力学模型对试验数据进行拟合,并测定了EDTA处理前后土壤中重金属形态的变化.结果表明,EDTA溶液在浓度为0.1 mol·L-1、pH 7、淋洗时间1 d的条件下能达到对污染土壤重金属的最大去除率,去除率分别为Cd 89.14%、Pb 34.78%、Cu 14.96%、Zn 45.14%.模型拟合结果表明,Cd的质量转移系数最大,其次是Zn、Pb和Cu.说明在土壤淋洗过程中,Cd和Zn最先达到质量转移的平衡状态,然后是Pb和Cu.形态分级结果表明,EDTA能有效地去除交换态、碳酸盐结合态和氧化物结合态重金属,而对有机态和残余态部分重金属作用效果不明显.  相似文献   

7.
Lee J  Bae H  Jeong J  Lee JY  Yang YY  Hwang I  Martinoia E  Lee Y 《Plant physiology》2003,133(2):589-596
Large parts of agricultural soil are contaminated with lead (Pb) and cadmium (Cd). Although most environments are not heavily contaminated, the low levels observed nonetheless pose a high risk of heavy metal accumulation in the food chain. Therefore, approaches to develop plants with reduced heavy metal uptake are important. Recently, many transgenic plants with increased heavy metal resistance and uptake of heavy metals were developed for the purpose of phytoremediation. However, to reduce heavy metal in the food chain, plants that transfer less heavy metals to the shoot are required. We tested whether an Escherichia coli gene, ZntA, which encodes a Pb(II)/Cd(II)/Zn(II) pump, could be useful for developing plants with reduced heavy metal content. Yeast cells transformed with this gene had improved resistance to Pb(II) and Cd(II). In Arabidopsis plants transformed with ZntA, ZntA was localized at the plasma membrane and improved the resistance of the plants to Pb(II) and Cd(II). The shoots of the transgenic plants had decreased Pb and Cd content. Moreover, the transgenic protoplasts showed lower accumulation of Cd and faster release of preloaded Cd than wild-type protoplasts. These results show that a bacterial transporter gene, ZntA, can be functionally expressed in plant cells, and that that it may be useful for the development of crop plants that are safe from heavy metal contamination.  相似文献   

8.
A greenhouse experiment using 24 plastic pots filled with 6 kg of Pb- and Cd-contaminated soil was carried out. In all 24 pots, soils were heavy metal–contaminated with 10 mg Cd kg?1 soil and 500 mg of Pb kg?1 soil by using CdCl and PbNO3. Two-month-old tobacco (Nicotiana tabacum L.) plants were used to extract these heavy metals. Results showed that tobacco is able to remove Cd and Pb from contaminated soils and concentrate them in its harvestable part, that is, it could be very useful in phytoextraction of these heavy metals. Increasing additions of ammonium nitrate to soil (50, 100, and 150 mg N kg?1 soil) significantly (p ≤ .05) increased aboveground Cd and Pb accumulation during a 50-day experimental period, whereas increasing additions of urea to soil (50 and 100 mg N kg?1 soil) did not show these effects at the same significance levels. Increasing additions of ammonium nitrate to soil shows as dry matter increases, both accumulated Cd and accumulated Pb also increase when tobacco plants are growing under Pb- and Cd-contaminated soil conditions. Higher Pb concentrations depress Cd/Pb ratios for concentrations and accumulations, suggesting that Pb negatively affects Cd concentration and/or accumulation.  相似文献   

9.
We studied the effect of heavy metals such as Cu, Zn, Cd, and Pb on the activity of membrane-bound and soluble phosphohydrolases of barley root cell apoplast. The effect of heavy metals on the activity of acid phosphatase and acid nucleotidases proved to depend on the presence of calcium and magnesium ions in the incubation buffer, the condition and form of the enzymes, as well as the dose and moment of the addition of heavy metals. We propose changing the activity of acid phosphohydrolases in barley root cell apoplast as a possible mechanism of barley adaptation to the toxic effect of heavy metals.  相似文献   

10.
Seed germination is tolerant to heavy metals apparently because the seed coat is impermeable to metal ions. However, it is not clear whether the seed coat is a universal barrier for all metals. In addition, depending on their physical and chemical properties, a distribution of various metals may differ within an imbibing caryopsis, and therefore they produce dissimilar effects on seed germination. The toxic effects of Cd(NO3)2, Pb(NO3)2, Ni(NO3)2, and Sr(NO3)2 were estimated from the germination rates of maize (Zea mays L.) caryopses following two-day incubation with these salts. The distribution of heavy metals and Sr was studied by histochemical methods based on the formation of colored complexes with dithizone (Cd and Pb), dimethylglyoxyme (Ni), and sodium rhodizonate (Sr). Although the metals under study did not affect maize radicle protrusion, they inhibited seed germination in the following order: Cd > Ni ≈ Pb > Sr. Cd and Pb accumulated mainly in the seed coat cells, but Sr and Ni in the embryo cells and in the cells of endosperm (Sr) and scutellum (Ni). Although Cd was found only in the seed coat, it was the strongest inhibitor of seed germination. Apparently, due to high toxicity, Cd exerted its inhibitory effect at the concentrations too low for histochemical assay. In spite of easy translocation across the seed coat of imbibing caryopses, Sr did not considerably inhibit radicle protrusion and seed germination, apparently because of its low toxicity and predominant localization in the apoplast of embryo and endosperm cells.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 635–640.Original Russian Text Copyright © 2005 by Seregin, Kozhevnikova.  相似文献   

11.
Pot culture experiments were established to determine the effects of colonization by arbuscular mycorrhizal fungi (AMF) (Glomus mosseae and G. sp) on maize (Zea mays L.) grown in Pb, Zn, and Cd complex contaminated soils. AMF and non-AMF inoculated maize were grown in sterilized substrates and subjected to different soil heavy metal (Pb, Zn, Cd) concentrations. The root and shoot biomasses of inoculated maize were significantly higher than those of non-inoculated maize. Pb, Zn, and Cd concentrations in roots were significantly higher than those in shoots in both the inoculated and non-inoculated maize, indicating the heavy metals mostly accumulated in the roots of maize. The translocation rates of Pb, Zn, and Cd from roots to shoots were not significantly difference between inoculated and non-inoculated maize. However, at high soil heavy metal concentrations, Pb, Zn, and Cd in the shoots and Pb in the roots of inoculated maize were significantly reduced by about 50% compared to the non-inoculated maize. These results indicated that AMF could promote maize growth and decrease the uptake of these heavy metals at higher soil concentrations, thus protecting their hosts from the toxicity of heavy metals in Pb, Zn, and Cd complex contaminated soils.  相似文献   

12.
The study was conducted at three locations in the Savinjska region of Slovenia, where soil is contaminated with heavy metals due to the zinc industry (Cinkarna Celje). In Ponikva the soil to a depth of 30 cm contains 0.8 mg kg(-1) Cd, 32.2 mg kg(-1) Pb, and 86 mg Zn kg(-1), in Medlog 1.4 mg kg(-1) Cd, 37.4 mg kg(-1) Pb, and 115 mg kg(-1) Zn and in Skofja vas 10.9 mg kg(-1) Cd, 239.7 mg kg(-1) Pb, and 1356 mg kg(-1) Zn. The pH at the selected sites was between 7.3 and 7.6. In the beginning of September 2006 two hybrids of Brassica napus L. var. napus, PR45 D01 and PR46 W31 suitable for production of biodiesel obtained from Pioneer Seeds Holding GmbH, were sown. After 96 days juvenile and after 277 days mature plants were collected. Parts of plants (root, shoot and seed) were separated and Cd, Pb, Zn, Mo, and S determined by ultra-trace ICP-MS. We compared the uptake of Cd, Pb, Zn, Mo and S in different parts of juvenile and mature plants of the two different hybrids, TF (translocation factor), BAF (bioaccumulation factor), and PP (phytoextraction potential) were calculated. The mature hybrid PR46 W31 had higher shoot/root ratio and higher PP for metals (Cd, Pb, and Zn) and lower PP for the micronutrient (Mo) and macronutrient (S) on the polluted site. The study demonstrated the potential use of oilseed rape on multiply polluted soils for production of 1st and 2nd generation biofuels. The potential restoration of degraded land could also disburden the use of agricultural land.  相似文献   

13.
Summary. Increased contents of cadmium (Cd), lead (Pb), zinc (Zn) and other heavy metals in barley plants enhanced the accumulation of trimethylglycine (betaine), putrescine and spermine. Higher contents of heavy metals in barley were caused by soil enrichment with heavy metals and by soil salinity. The highest accumulation of spermine and betaine (increase 3-fold or 5-fold in comparison to untreated soil substrates) was obtained at the highest concentration of heavy metals in plants. Consequently the betaine-N / protein-N-ratio and the spermine-N / protein-N-quotient increased 3-fold in plants with high heavy metal contents. The biomass formation was not changed significantly by the different experimental treatments. Received January 28, 2000 Accepted March 1, 2000  相似文献   

14.
The contamination of coal-mine soil by heavy metals is a widespread problem. This study analyzes the heavy metals (Cu, Zn, Ni, Pb, Cr, Cd, and Hg) found in 33 surface soil samples from Xinzhuangzi, China restored coal-mining land used as cultivated land. The results show that the selected elements were cumulative, especially for Cd. An index of geo-accumulation indicates that the soil was practically uncontaminated by Cu, Zn, Ni, and Hg, uncontaminated to moderately contaminated by Pb and Cr, and moderately to heavily contaminated by Cd. Based on the U.S. Environmental Protection Agency's ecological soil screening levels (Eco-SSLs) for Cu, Zn, Ni, Pb, and Cd and the Dutch Target and Intervention Values for Cr and Hg, the plants and soil invertebrates were not likely greatly influenced by the selected metals. Although the Cd concentration was found to have no significant effect on plants and soil invertebrates, it is the only metal with a concentration significantly above that required by Chinese standards (HJ/T 332–2006) for edible agricultural products, indicating that Cd is the predominant factor that determines the use of the reclaimed coal-mining area for farmland. Thus, employing the reclaimed land as farmland may not be a good option.  相似文献   

15.
攀钢冶炼渣堆土壤与优势植物的重金属含量   总被引:3,自引:0,他引:3  
魏敏  刘新  陈朝琼  余小平  彭晓莉 《生态学报》2008,28(6):2931-2931~2936
采用原子吸收分光光度法测定攀钢西渣场冶炼渣堆土壤和6科12种优势植物中Mn、Pb、 Ni、 Cu、Cd等5种重金属含量,并计算优势植物对重金属的富积系数和转移系数.结果表明:渣堆土壤中重金属含量Mn最高(3869.14 mg/kg),次后顺序为Pb>Ni>Cu>Cd;植物与土壤的重金属分布基本一致;所测优势植物中,多数植物对重金属的富积系数较低,而转移系数却较高,如天名精对Cu的转移系数为5.1,羽芒菊对Pb转移系数为3.3,五月艾对Cd的转移系数为6.0,其中8种植物(天名精、羽芒菊等)对Mn的转移系数均大于1.该结果为重金属污染土壤的植物修复提供了参考物种,同时也为植物重金属耐受机制的研究提供了筛选对象.  相似文献   

16.
湖南柿竹园矿区土壤重金属含量及植物吸收特征   总被引:54,自引:1,他引:53  
矿区重金属污染十分严重,寻找和发现适合当地气候与土壤条件的重金属耐性植物是矿区植被恢复和污染土壤修复的前提。对我国湖南柿竹园有色金属矿区调查发现,该地区选矿厂的重金属污染问题普遍比尾砂库严重。选矿厂土壤砷、镉、铅、锌严重超标,尾砂库周围也受到不同程度的重金属污染。土壤重金属胁迫效应影响着植物物种分布,选矿厂物种分布较少,相比之下尾砂库的植物多样性较为丰富。柿竹园矿区植物对重金属的吸收表现为富集型(如蜈蚣草Pteris Vittata L .和苎麻Boehmerianivea (L .) Gaud.)、根部囤积型(如攀倒甑Patrinia villosa和木贼Equisetum hyemale)和规避型(如蔓出卷柏Selaginelladavidii Franch和芒草Miscanthus sinensis Andlerss)等3种类型。  相似文献   

17.
Grčman  H.  Velikonja-Bolta  Š.  Vodnik  D.  Kos  B.  Leštan  D. 《Plant and Soil》2001,235(1):105-114
Synthetic chelates such as ethylene diamine tetraacetic acid (EDTA) have been shown to enhance phytoextraction of some heavy metals from contaminated soil. In a soil column study, we examined the effect of EDTA on the uptake of Pb, Zn and Cd by Chinese cabbage (Brassica rapa), mobilization and leaching of heavy metals and the toxicity effects of EDTA additions on plants. The most effective was a single dose of 10 mmol EDTA kg–1 soil where we detected Pb, Zn and Cd concentrations that were 104.6, 3.2 and 2.3-times higher in the aboveground plant biomass compared to the control treatments. The same EDTA addition decreased the concentration of Pb, Zn and Cd in roots of tested plants by 41, 71 and 69%, respectively compared to concentrations in the roots of control plants. In columns treated with 10 mmol kg–1 EDTA, up to 37.9, 10.4 and 56.3% of initial total Pb, Zn and Cd in soil were leached down the soil profile, suggesting high solubility of heavy metals-EDTA complexes. EDTA treatment had a strong phytotoxic effect on the red clover (Trifolium pratense) in bioassay experiment. Moreover, the high dose EDTA additions inhibited the development of arbuscular mycorrhiza. The results of phospholipid fatty acid analyses indicated toxic effects of EDTA on soil fungi and increased environmental stress of soil microfauna.  相似文献   

18.
Deteriorating urban water quality has attracted considerable attention in China. We investigated the contamination levels and distribution of heavy metals (As, Cd, Cu, Ni, Pb, and Zn) in Yuxi River water and sediments, and assessed the heavy metal accumulation capability of five species of submerged macrophytes: Vallisneria natans (Lour.) Hara, Potamogeton pectinatus L., Hydrilla verticillata (L. f.) Royle, Myriophyllum spicatum L., and Potamogeton crispus L. Samples were collected from upstream and downstream locations in different season. The results showed that the levels of heavy metals in the downstream areas were higher than in the upstream areas. Heavy metal concentrations in the river water during the dry seasons were higher than those during the rainy seasons, and the opposite results appeared in sediments and submerged macrophytes. In general, the river was slightly contaminated by heavy metals, and the concentrations of Pb and Ni in this river should serve as a warning, while Cd and Zn pollution in the sediments desperately needs to be removed. Furthermore, Potamogeton pectinatus L. showed a higher accumulation capacity for these metals among the five native submerged macrophytes and could be defined as a hyperaccumulator for Cd. Therefore, the potential use of native aquatic plants in contaminated rivers is worth further exploration.  相似文献   

19.
测定了Hg2+、Cd2+、Cu2+、Pb2+单一重金属胁迫对拟南芥种子发芽和幼苗生长的影响.结果表明,重金属对幼苗生长的毒性大于对种子发芽的毒性,以抑制种子发芽的IC50为指标,4种重金属的毒性顺序为Hg2+>Cd2+>Pb2+/Cu2+,以幼苗生长为指标,则毒性顺序为:Cu2+>Hg2+>Cd2+/Pb2+,并随着胁迫时间延长,种子萌发率下降.此外,不同重金属在不同发芽时段对种子的毒性也不尽相同,Cd2+的毒性在种子吸水后的0~12 h大于12~24 h,而Hg2+毒性在12~24 h大于0~12 h,其中,种皮对减轻重金属毒性起着十分重要的作用.通过非毒性离子(Ca2+、Mg2+、K+、Na+)与重金属离子(Hg2+、Cd2+、Cu2+、Pb2+)交互作用对拟南芥种子发芽及幼苗生长效应的研究发现, mmol·L-1的Ca2+、Mg2+、K+、Na+可以增强Hg2+对种子发芽的毒性,但对Cd2+的毒性却没有影响.对于幼苗来说,Ca2+、Mg2+、K+、Na+可以显著增强Hg2+的毒性,Ca2+可以缓解Cd2+的毒性,但却增加Cu2+的毒性,K+可以缓解Pb2+对幼苗的毒害作用.最后,本文对重金属的毒害机理进行了探讨.  相似文献   

20.
The accumulation and excretion of lead (Pb) and cadmium (Cd) by salt cedar (Tamarix smyrnensis Bunge) were investigated in this study. Tamarix smyrnensis plants were exposed to the mixtures of Pb and Cd and high salinity for 10 wk. Subsequently, Pb and Cd uptake was quantified in the shoots and roots of the plants by ICP-AES. In addition, physiological parameters such as biomass production, shoot length, plant appearance, and chlorophyll content were examined. The roots accumulated the highest amount of Pb. Salinity was found to not have an important effect on Pb translocation to the leaves. Cd was translocated into the aerial part in a higher portion than Pb. Cd content in leaves of T. smyrnensis increased with the increasing salinity. The visible toxicity symptoms, if present, were connected only to the high salinity. The excretion of Pb and Cd by salt glands was observed and quantified. T. smyrnensis excreted a significant amount of metals on the leaf surface. This characteristic of salt cedar plants can be viewed as a novel phytoremediation process for the remediation of sites contaminated with heavy metals that we have termed "phyto-excretion."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号