首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Concentrations of Cd, Pb and Cu in the roots, stems and leaves of bulgarian bush beans (Phaseolus vulgaris L.) were determined for plants grown in various soils of increasing levels of contamination of these metals. Most of each heavy metal absorbed by plants was retained in roots. Concentrations of Cd, Pb and Cu in roots increased in response to soil concentrations, whereas, in stems, only Cd and Pb concentrations increased and Cu concentration was relatively constant. It is thought that Cu transport to the stele was metabolically controlled, whereas Cd and Pb reached the stem by leakage across non suberised areas of the endodermis. Uptake of heavy metals was associated with a decrease in zinc content in plants and a decrease in yield. By regression analysis decrease in both zinc content and plant yield could be best related to Cd content in stems. Possible reasons for these effects are discussed.  相似文献   

2.
碳酸钙对水稻吸收重金属(Pb、Cd、Zn)和As的影响   总被引:11,自引:0,他引:11  
选用重金属(Pb、Cd、Zn)和As复合污染土壤进行水稻盆栽试验,结果表明,碳酸钙的添加显著提高了土壤pH值,显著降低了土壤中交换态Pb、Cd、Zn和As的含量,与对照相比,交换态Pb、Cd、Zn和As含量分别最多降低了98.35%,93.72%,98.52%和69.48%。碳酸钙对水稻根、稻谷干重和总生物量没有显著影响,添加量过高时显著降低了水稻分蘖数和茎叶干重,说明过量施用碳酸钙对水稻生长会产生负面作用。因为碳酸钙的添加,水稻植株各部位重金属Zn含量显著降低,糙米中Zn含量最多减少了34.95%;根、谷壳中Pb、Cd含量显著降低,但糙米中含量却未显著降低;水稻各部位As含量均没有显著降低。参照《食品中污染物限量》(GB2762—2012),试验糙米中Pb、Cd、无机As含量均未达到限量标准。显然,碳酸钙的添加降低了Pb、Cd、Zn的生物有效性(水稻根系对Pb、Cd、Zn的吸收累积减少),但并未有效地抑制Pb、Cd向糙米转运;碳酸钙显著降低了土壤的交换态As含量,但并未使土壤中As的生物有效性明显降低(水稻植株各部位的As含量并未显著减少)。  相似文献   

3.
铜尾矿库区土壤与植物中重金属形态分析   总被引:23,自引:2,他引:21  
对铜陵铜尾矿区土壤和植物中重金属形态进行了研究.结果表明,尾矿库区种植地极端贫瘠,有机质含量仅2.6~.8 g·kg-1,而土壤Cu、Cd、Pb、Zn含量皆高于对照土壤,其中Cu含量达809.30~1 39.4 mg·kg-1,Cd含量达3.2~6.3 mg·kg-1,达到对照土壤30~60倍.结缕草和三叶草体内重金属含量与土壤重金属交换态及有机结合态含量成正相关,与碳酸盐结合态、铁锰氧化物结合态成显著或极显著负相关,与矿物态含量相关性不显著.在两种优势植物中,Cu、Zn、Pb均以活性较低的醋酸提取态、盐酸提取态和残渣态为主;Zn在根系和茎叶中,NaCl提取态占有较大比例,而Cd均以NaCl提取态为主.  相似文献   

4.
Joint effects of Cd and other heavy metals (Pb, Cu, Zn and As) on the growth and development of rice plants and the uptake of these heavy metals by rice were studied using the pot-culture method combined with chemical and statistical analyses. The results showed that the growth and development of rice plants were strongly influenced by the double-element combined pollution. There was an average decrease in the height of rice plants of 4.0–5.0 cm, and grain yield was decreased by 20.0–30.0%, compared with the control. The uptake of Cd by rice plants was promoted due to the interactions between Cd and the other heavy metals added to the soil. The Cd concentration in roots, stems/leaves and seeds increased 31.6–47.7, 16.7–61.5 and 19.6–78.6%, respectively. Due to interactions, uptake of Pb, Cu and Zn by roots and stems/leaves was inhibited, accumulation of Pb, Cu and Zn in seeds was increased, uptake of As by roots was promoted and uptake of As by stems/leaves was inhibited. In particular, the upward transporting ability of the heavy metals absorbed by rice plants was significantly increased.  相似文献   

5.
The effects of 1 mM cadmium, lead and nickel on dry mass, Cd, Pb, and Ni contents, and changes in leaf structure in young wheat plants were studied. In leaves, Cd content was highest, followed by Pb and Ni, in roots Cd content was also highest, but followed by Ni and Pb. Roots accumulated considerably larger amounts of the three heavy metals than leaves. Largest reductions of leaf and root mass were obtained with Cd. Pb and Ni effects were almost equal. Ni excess had a strong negative effect on mesophyll thickness, while Cd mostly reduced the number and size of vascular bundles and vessel diameter. High Pb reduced the diameter of vessels causing their different deformations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The distribution of Cd, Ni, Pb and Fe between the symplasm (cytoplasm) and apoplasm (cell wall) of cucumber roots and leaves was determined by total reflection X-ray fluorescence spectrometry following a special sample preparation procedure. The plants were grown in modified Hoagland nutrient solution containing Fe in chemical form of Fe(III)-citrate or Fe(III)-EDTA, as well as the heavy metal contaminants, each in concentration of 10 microM. In the roots the larger part of Pb was found in the apoplasm, while Ni and Cd were mostly in the symplasm. In the leaves however, about 50-60% of the Pb content and practically the total amount of Cd were detected in the symplasm. About 30-40% of the translocated Ni remained in the apoplasm of the leaves. The Cd-, Ni- and Pb-treatments resulted in higher total concentration of Fe in the roots, however, the relative amount of Fe in the symplasm decreased in all cases. In the leaves of the control plants the larger part (60-80%) of Fe occurs in the symplasm. Due to the heavy metal effects, the relative amount of Fe in the symplasm decreased except in the Pb-contaminated plants, where in the presence of Fe(III)-EDTA, the Pb treatment resulted in a moderate increment of Fe concentration in the symplasm.  相似文献   

7.
柽柳对镉胁迫的生理生态响应   总被引:4,自引:0,他引:4       下载免费PDF全文
在温室条件下采用营养液培养的方法研究了营养液中Cd2+浓度为0、10、50、200和500 μmol·L -1时,柽柳(短穗柽柳(Tamarix laxa))对重金属镉的吸收和分泌特点。研究结果表明:与对照相比,较低浓度(10 μmol·L -1)镉处理对柽柳的生长量、含水率均没有显著变化,两周培养期间内没有出现镉中毒症状;Cd2+浓度增加至50 μmol·L -1时对柽柳产生了较强的毒害作用,柽柳的生长量、植株含水率均明显下降,在加镉处理第十二天时营养枝开始发黄,出现镉中毒症状。柽柳不同器官镉积累量由大到小依次为:根系>新生营养枝>枝条。研究还发现,柽柳盐腺能够分泌镉,分泌镉的量占营养枝中镉含量的0.5%左右;在较低浓度(0~50 μmol·L-1)时柽柳对镉的分泌量随着培养液中Cd2+浓度的增加而增加,并在50 μmol·L -1镉处理时,分泌物中Cd2+浓度达到本试验中的最高点,然后镉的分泌量开始下降。这一结果说明,尽管泌盐盐生植物——柽柳的盐腺能够分泌重金属镉,但是其数量在植株累积的镉总量中所占甚少,对短穗柽柳耐镉毒害能力贡献不大。  相似文献   

8.
农作物体内铅,镉,铜的化学形态研究   总被引:75,自引:8,他引:67  
本文报道了农作物体内重金属存在的化学形态。用逐步提取法分析了生长在污染土壤上的水稻、小麦的根与叶。结果表明,在两种作物中,根部的铅以活性较低的醋酸可提取态与盐酸可提取态占优势,而叶中的铅以盐酸可提取态占优势。不论根部或叶部,在各种形态镉中,以氯化钠可提取镉所占比例较高,作用较重要。作物体内的铜活性较强,根部以乙醇可提取态占优势,叶中以水提取态占优势。各种结合形态的重金属迁移能力、毒性效应有显著差异。作物体内重金属化学形态特征与其表观毒性效应有密切联系。  相似文献   

9.
The inhibitory effects of Cd, Cu, Zn, Pb, and Fe on root elongation, contents of photosynthetic pigments, and metal accumulation in the roots and shoots of Sinapis alba were assessed. On the basis of growth inhibition metals can be arranged in a order Cu > Cd > Fe = Zn > Pb. All the metals, except Fe, were accumulated in significantly higher amount in the roots than in the shoots. Cd, Zn, Cu and Pb reduced chlorophyll a, and especially chlorophyll b content, and Zn and Pb reduced the carotenoid content, but less than that of chlorophyll a+b. The plants contained the highest concentration of Cd, and the lowest concentration of Zn.  相似文献   

10.
An experiment was performed to determine the effects of mine tailings alone mixed with compost or with compost plus crude biosurfactant on the accumulation of heavy metals (Pb, Zn, Cu, Cr, Cd, and Ni) in Acacia retinodes, Nicotiana glauca, and Echinochloa polystachya. The plants were grown in soil, mine tailings, and mine tailings containing compost over a period of seven and five months for shrubs or grass, respectively. The plants Acacia retinodes and Nicotiana glauca grown in mine tailings containing compost showed increases in dry biomass (from 62 to 79%) compared with plants in only tailings. Heavy metals accumulated in the roots and leaves showed high translocation rates of Cr in N. glauca, Cd in A. retinodes, and Ni in E. polystachya. Concentrations of heavy metals in the three plants irrigated with crude biosurfactant were not significantly different from those irrigated with water. Zn and Cd fractions within mine tailings containing compost were bound to carbonate, Pb was bound to residues, and Cu was bound to Fe-oxides. Cd had the highest mobility factor followed in order by Zn, Pb, and Cu. The elevated concentrations of Pb in roots and the low translocation rate for N. glauca and A. retinodes indicate that they are suitable for phytostabilizing Pb and Zn.  相似文献   

11.
菰和菖蒲对重金属的胁迫反应及其富集能力   总被引:26,自引:3,他引:23  
通过盆栽实验研究了Cu—Zn—Ph-Cd复合污染条件下,菰和菖蒲的生长状况、生理特性及吸收和富集重金属的能力。结果表明,高浓度污染下菰和菖蒲不能存活;低、中浓度中菖蒲的生长受到抑制,菰各生长指标与对照相比差异不显著,表明菰对低、中浓度重金属的耐性强于菖蒲。随着污染浓度的增加,菰和菖蒲叶片叶绿索含量显著降低;菰叶绿素a/b值略有降低,菖蒲叶绿素a/b值显著降低;菰和菖蒲叶片脯氨酸含量、相对电导率显著升高,超氧化物歧化酶(SOD)、过氧化物酶(POD)活性在低浓度时升高,中浓度时降低。菰体内重金属含量为Zn〉Cu〉Pb〉Cd,菖蒲体内的含量为Cu〉Zn〉Pb〉Cd,且二者体内的重金属含量都随着污染浓度的增加而升高。菰和菖蒲对Cd的富集系数较大,地上部分(茎与叶)和地下部分(根与根状茎)均大于1;对Pb的富集系数较小,地上部分和地下部分均小于1。菰和菖蒲地下部分重金属含量均高于地上部分含量,二者根系对4种重金属都有较强的滞留效应,平均滞留率均大于50%。各处理中菰对重金属的吸收量均高于菖蒲。综合分析菰和菖蒲的生长、生理及富集重金属的能力,菰比菖蒲更适用于低、中浓度重金属污染水体的生态修复。  相似文献   

12.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

13.
Summary The metal distribution within mycorrhizal and nonmycorrhizal roots ofEpipactis atrorubens collected from zinc mine tailings and an area rich in heavy metal ores (both located in southern Poland) was investigated. The tailings, consisting of postflotation material, were characterised by high levels of toxic elements such as Zn, Pb, and Cd, while soil outside the tailings was also strongly enriched in heavy metals. Atomic absorption spectrometry and proton-induced X-ray emission analysis revealed that heavy metals were mostly accumulated within orchid roots. Elemental maps from proton-induced X-ray emission showed that plant root epidermis and fungal coils which had developed within cortical cells of roots collected from the zinc mine tailings were the main places of Zn and Pb accumulation, associated with increased concentrations of Fe, Cd, Ti, Mn, Si, Ca, and S. The mean content of Pb and Zn in the coils was 4 to 5 times higher than in the root epidermis. In mycorrhizal roots from the tailings a statistically significant decrease in Pb and Zn content towards the inside of the root was observed. The mean content of Pb in coils from roots of plants growing outside the tailings was about 1% of the concentration in root coils from the tailings. Coils selected from orchid roots originating from a site outside the tailings contained comparatively high concentrations of Zn, Cd, and Cu, which was probably due to the high content of these elements in the soil. The results presented suggest a biofiltering effect against heavy metals by orchid mycorrhizal fungi.  相似文献   

14.
A total of 59 topsoil and corresponding maize plants were collected from this study area. The spatial distribution, correlation analysis, and multiple linear regression of heavy metals were researched detailedly in this article. The results showed that distribution characteristics of heavy metals (Pb, Cd, and Ni) in different parts of maize plants (immature stage) accumulated mostly in stems, with Pb mainly accumulated in roots (mature period), and Cd and Ni mostly in leaves. Except for the southeastern local region of this mining area, Mn and Cu possessed roughly similar spatial distribution characteristics. The results of partial correlation analysis indicated that Cu, Cd in the roots of the tested maize plants and Ni in soil may have antagonistic effects, Cu (soil)–Cu (stem) and Ni (soil)–Pb (stem) had a certain promoting effect. Besides, Cu, Pb, and Ni in soil promoted the absorption of Cu, Pb, and Ni in the leaves, whereas Cr and Pb in soil can promote the enrichment of Mn in maize grains. Our findings suggested that the concentrations of heavy metals in maize organs could be predicted accurately using the established models.  相似文献   

15.
A comparative bioaccumulation pattern and ultra structural changes were studied in Phragmites cummunis, Typha angustifolia and Cyperus esculentus in mixed metals solution of cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn). P. cummunis was observed to be a shoot accumulator for Cr, Fe, Mn, Ni, Pb, and Zn. However, T. angustifolia was found to be a root accumulator for Cd, Cr, Cu, Fe, Ni and Pb. In addition, C. esculentus also accumulated most of the tested heavy metals in the roots, while Mn and Fe were translocated up to leaves. Further, the long term metal treatment showed maximum accumulation of all heavy metals in P. cummunis followed by T. angustifolia and C. esculentus. Among heavy metals, Fe was accumulated maximum, i.e., >1000 microg g(-1) by all three plants. Simultaneously, the adverse effects on biochemical parameters were noted earlier in C. esculentus than T. angustifolia and P. cummunis. Ultra structural observation showed the cellular changes in wetland plants after longer exposure. Results revealed that P. cummunis and T. angustifolia had more potential for tested metals than C. esculentus. This study established that these wetland plants could be used for heavy metals phytoremediation from metal containing industrial wastewater.  相似文献   

16.
Question: What are the interactive roles of abiotic stress and plant interactions in mediating the zonation of the shrub Tamarix chinensis along a salinity gradient? Location: Yellow River estuary (37°46′N, 119°09′E), northeast China. Methods: We surveyed the zonation of T. chinensis along a salinity gradient and quantified its salt tolerance using a pot experiment. In two field experiments, we transplanted T. chinensis seedlings into salt marsh, transitional zone and upland habitats, manipulated neighbours and quantified survivorship and biomass to examine neighbour effects. We also quantified vegetation effects on abiotic conditions in each zone. Results: Tamarix chinensis dominated the transitional zone, but was absent in upland and salt marsh habitats. In the pot experiment, T. chinensis grew well in freshwater treatments, but was inhibited by increasing salinity. Field experiments revealed that competition from neighbours limited T. chinensis growth in the uplands, while T. chinensis transplants were limited, with or without neighbours, in the salt marsh by high soil salinity. In the transitional zone, however, T. chinensis transplants performed better with than without neighbours. Vegetation removal significantly elevated soil salinity in the transitional zone, but not in other zones. Conclusions: Competition, facilitation and abiotic stress are all important in mediating the zonation of T. chinensis. Within its physiological stress tolerance range, or fundamental niche, it is limited by plant competition in low salinity habitats, and facilitated by neighbours in high salt stress habitats, but cannot survive in salt marshes having salinities above its salt stress tolerance limit. Our results have implications for understanding the relationships between facilitation and stress gradients.  相似文献   

17.
The phytoremediation potential of the halophyte Limoniastrum monopetalum for the removal of Cd and Pb from polluted sites is assessed in this work. Two pot experiments were conducted; the first with wild L. monopetalum grown on soil polluted with Cd and Pb irrigated at different salinities, and the second with commonly cultivated ornamental L. monopetalum grown on soil polluted with Cd irrigated also at different salinities. The data revealed that wild L. monopetalum is a Cd and Pb tolerant plant able to accumulate at least 100 ppm of cadmium in its shoots without showing any significant decrease in terms of biomass production, chlorophyll content or water content suggesting that it could be an accumulator of Cd. Pb above-ground accumulation was kept at low levels with the majority of Pb localized in the roots. On the other hand, contrasting results were obtained for ornamental L. monopetalum which although it was found to be also Cd tolerant, Cd accumulation in its tissues was kept at significantly lower levels especially compared to that of the wild ecotype. In addition for ornamental L. monopetalum salinity did not have a positive effect on Cd accumulation and translocation as observed in the wild type and in other halophytes. Analysis of the salt excretion crystals on the leaf surface confirmed that wild and cultivated ornamental L. monopetalum excrete cadmium and lead through their salt glands as a possible metal detoxification mechanism, although the amount excreted by the ornamental L. monopetalum is significantly less.  相似文献   

18.
The influence of betaine aldehyde dehydrogenase (BADH) and salinity pretreatment on oxidative stress under cadmium (Cd) toxicity was investigated in rice cv. Xiushui 11 and its BADH-transgenic line Bxiushui 11. The results showed that plants previously treated with 4.25 and 8.5 mM NaCl, respectively, for 5 days each had higher Cd concentrations in both roots and shoots of the two rice genotypes compared with the controls. Malondialdehyde (MDA) content in both leaves and roots was increased by salinity pretreatment and was significantly lower in the salinity-pretreatment plants than in the controls when the plants were consequently exposed to Cd stress. Salinity pretreatment also increased proline content and the activities of superoxide dismutase (SOD) and peroxidase (POD) in both leaves and roots. It can be assumed that salinity pretreatment enhances the defensive ability of plants against oxidative stress through increasing activities of antioxidative enzymes. The BADH-transgenic line (Bxiushui 11) had lower Cd and MDA content, higher SOD and POD activities, and higher proline content than its wild type (Xiushui 11). The current results suggest that betaine, a product of BADH expression, improves the tolerance of rice plants to Cd stress through increasing the activities of antioxidative enzymes and osmoprotectant content.  相似文献   

19.
有机酸对Pd 、Cd的土壤化学行为和植株效应的影响   总被引:46,自引:3,他引:43  
有机酸对Pd,Cd的络合作用将其对土壤吸附Pd,Cd的影响和植株效应差异的研究表明,柠檬酸,草酸与Pd,Cd络合能力的大小与重金属本身的性质有关,络合作用影响土壤对Pd,Cd的吸附量,柠檬酸降低土壤对Pd,Cd的吸附,草酸则增加土壤对Pd,Cd的吸附,水培试验表明,柠檬酸可减轻Pb对小麦,水稻幼苗的毒害,柠檬酸对Cd的植株外观毒性效应影响不显著,但能促使植株茎叶,根中Cd含量下降,Pd和Cd复合处理条件下,Cd存在促使水稻植株对Pd吸收量增加,Pd存在抑制水稻植株对Cd的吸收。  相似文献   

20.
有机酸对Pb、Cd的络合作用将其对土壤吸附Pb、Cd的影响和植株效应差异的研究表明,柠檬酸、草酸与Pb、Cd络合能力的大小与重金属本身的性质有关,络合作用影响土壤对Pb、Cd的吸附量,柠檬酸降低土壤对Pb、Cd的吸附,草酸则增加土壤对Pb、Cd的吸附.水培试验表明,柠檬酸可减轻Pb对小麦、水稻幼苗的毒害.柠檬酸对Cd的植株外观毒性效应影响不显著,但能促使植株茎叶、根中Cd含量下降.Pb和Cd复合处理条件下,Cd存在促使水稻植株对Pb吸收量增加,Pb存在抑制水稻植株对Cd的吸收.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号