首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 455 毫秒
1.
苔藓植物耐旱机制研究进展   总被引:1,自引:0,他引:1  
耐旱藓类快速脱水并存活的能力可由快速建立起来的对环境变化的耐受机制来反映,保护细胞完整性的组成型机制与修复细胞损伤的诱导机制协同作用使苔藓植物渡过干旱胁迫。再水化时光合系统原初恢复非常迅速;ABA处理可显著改变PSⅡ的生理特征;基因表达的变化主要由翻译调控引起;脱水组织中贮存mRNPs既保护了mRNAs, 又加快了再水化修复速度。山墙藓(Tortula ruralis)是耐旱研究较多的一个种,已建立了表达序列文库(EST),将会成为耐旱研究的重要模式植物。  相似文献   

2.
胃缺血-再灌注对大鼠胃黏膜细胞凋亡和增殖的影响   总被引:2,自引:0,他引:2  
Qiao WL  Wang L  Zhang JF  Zhang YM 《生理学报》2006,58(3):237-243
本研究采用大鼠胃缺血-再灌注(gastricischemia-reperfusion,GI-R)模型(夹闭腹腔动脉30 min后再灌注),通过组织学、免疫组化等方法,研究GI-R不同时间(0、0.5、1、3、6、24、48、72 h)对胃黏膜细胞凋亡和增殖的影响.结果发现,单纯缺血30 min胃黏膜损伤较轻,再灌注后损伤逐渐加重,胃黏膜的凋亡细胞迅速增加,而增殖细胞迅速减少;至再灌注后1 h达高峰;之后胃黏膜开始修复,凋亡细胞逐渐减少,增殖细胞逐渐增加;至再灌注后24 h胃黏膜细胞增殖达高峰;再灌注后72 h胃黏膜基本恢复正常.上述结果提示,在GI-R中,胃黏膜损伤主要由再灌注引起,凋亡细胞增加;然后胃黏膜启动自我修复机制,增殖细胞逐渐取代损伤细胞,3 d左右就可基本修复,表明胃黏膜细胞具有很强的自我修复能力.  相似文献   

3.
7种木本植物根和小枝木质部栓塞的脆弱性   总被引:7,自引:0,他引:7  
安锋  张硕新 《生态学报》2005,25(8):1928-1933
用脆弱曲线表示的植物木质部栓塞脆弱性反映了植物木质部栓塞程度与其水势间的关系。众多学者的研究结果表明,脆弱曲线能够提供有关植物的许多生理生态信息,与植物的木质部结构、部位、分布、抗寒、抗旱性等存在一定关系,但各国学者利用不同材料研究得出的结果各异,为了研究木质部栓塞的这种差异是否由于树木对环境适应性不同引起,选取西北农林科技大学西林校区内自然状况下生长良好的5个耐旱树种:刺槐(RobiniapseudoacaciaL.)、元宝枫(AcertruncatumBge.)(低水势忍耐脱水耐旱树种)、白榆(UlmuspumilaL.)(亚低水势忍耐脱水耐旱树种)、油松(PinustabulaeformisCarr.)、白皮松(PinusbungeanaZucc.ex.Endl.)(高水势延迟脱水耐旱树种),及中生的女贞(LigustrumlucidumAit.)和柳树(SalixmatsudanaKoidz.f.pendulaSchneid.)为研究对象,绘制了它们根和小枝的木质部栓塞脆弱曲线,探讨了中生树种和不同耐旱类型树种根和小枝木质部栓塞脆弱性的差异。结果表明:根和小枝的栓塞脆弱性主要由木质部结构决定,栓塞脆弱性顺序基本一致,小枝容易发生木质部栓塞的,其根也较容易发生栓塞;同一树种根和小枝的木质部栓塞脆弱性与植物的耐旱性有关,与树种的耐旱策略无关;一般是中生树种的栓塞脆弱性:小枝>根;耐旱树种的栓塞脆弱性:根>小枝。  相似文献   

4.
毛白杨(Populus tomentosa)和元宝槭(Acer truncatum)是华北平原人工林的主要树种, 研究两者水力结构和干旱-复水过程中茎非结构性碳水化合物(NSC)含量动态, 可揭示其水力学调控策略, 为全球气候变化背景下华北人工林水分平衡的科学管理提供理论依据。该研究以相同生境下分布的毛白杨和元宝槭幼树为研究材料, 测量两者的茎抗栓塞能力与水力安全阈、水力面积、叶膨压损失点等水力结构参数; 开展干旱-复水实验, 测定茎NSC含量动态以及干旱胁迫解除后复水阶段的木质部栓塞修复能力。结果表明: 毛白杨导水率损失50%对应的水势(-1.289 MPa)高于元宝槭(-2.894 MPa), 且膨压损失点时的渗透势低, 水力安全阈小, 木材密度小, 气孔调节偏向于变水行为, 表现为易栓塞的低水势忍耐脱水耐旱特性, 水分调节对策趋于冒险; 元宝槭则倾向于不易栓塞的高水势延迟脱水耐旱特性, 水分调节对策趋于保守。在干旱-复水实验中, 毛白杨可溶性糖、淀粉和茎NSC含量先减后增, 元宝槭则先增后减; 并且毛白杨表现出比元宝槭更高的栓塞修复能力, 这与植物体内茎NSC含量变化差异具有一定联系。毛白杨较高的栓塞修复能力也为其易栓塞的低水势忍耐脱水耐旱特性及冒险的水分调节对策提供水力安全保障。两树种在水力学调控上表现出的较大差异可能与其生活史特性相关。  相似文献   

5.
祁连山水源区主要树种耐旱性研究   总被引:1,自引:0,他引:1  
应用P-V技术对祁连山水源涵养林主要树种水分参数进行测定分析.结果表明,不同水分参数在树种上的变化规律各异,反映了植物耐旱机理的复杂性;对10项水分参数的主成分分析结果显示,以|φπ100-φπ0 |、RCV、ROWC0和εmax分析植物的耐旱性能具有可靠性.用两种几何数学方法的分析结果表明,按照耐旱性大小可将供试树种分为耐旱性强树种(青海云杉和千里香杜鹃)、耐旱性较强树种(祁连圆柏、烈香杜鹃、头花杜鹃和青海杜鹃)、耐旱性较弱树种(金露梅、绣线菊和红桦)和耐旱性弱树种(青杨).苗木清晨叶水势与土壤含水率间变化趋势可以用双曲线方程、幂函数式(或指数函数式)取得满意的拟合.通过逐步聚类分析,按照树种主要耐旱机理可分为高水势延迟脱水耐旱树种(红桦和青海杜鹃)、亚高水势延迟脱水型树种(青海云杉、千里香杜鹃和头花杜鹃)、亚低水势忍耐脱水耐旱树种(祁连圆柏)与低水势忍耐脱水型耐旱树种(金露梅、绣线菊和烈香杜鹃).  相似文献   

6.
以来自不同水分生境的金发藓和湿地匐灯藓为材料,对二者在脱水与复水胁迫条件下的活性氧代谢、脂质过氧化损伤程度及其抗氧化系统应答的差异进行比较研究。结果显示:在脱水与复水过程中,(1)硅胶快速脱水更接近阳光直射条件下藓类植物的水分丧失。(2)随着含水量的变化,湿地匐灯藓虽然能够在复水后迅速修复细胞的完整性,但变化剧烈;金发藓则能够始终维持较低的膜透性。(3)2种藓类植物的丙二醛(MDA)含量变化均呈先升后降趋势,但金发藓的MDA含量明显低于湿地匐灯藓。(4)2种藓类植物的超氧阴离子自由基(O2.-)产生速率和过氧化氢含量(H2O2)的变化均与MDA含量变化相似,且金发藓活性氧水平明显高于湿地匐灯藓。(5)2种藓类植物的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性受活性氧诱导亦呈先升后降的趋势,但金发藓抗氧化酶对活性氧迸发的应答更快,活性更强。(6)2种藓类植物的抗坏血酸(AsA)含量呈先降后升态势,但金发藓的含量低于湿地匐灯藓。研究表明,来自不同生境的2种藓类植物对脱水胁迫所致的氧化胁迫均具有很强的适应能力,尤其是复水过程中的修复能力,但不同藓类可能通过不同途径和机制来适应脱水所致的氧化胁迫;来自易发生水分亏缺生境的金发藓可能因具有更强抗氧化能力,从而获得比来自水分充沛生境的湿地匐灯藓更高的脱水耐性。  相似文献   

7.
脱水与复水过程中湿地匍灯藓的生理生化响应   总被引:4,自引:0,他引:4  
李朝阳  田向荣  陈军  李菁 《广西植物》2009,29(1):139-140
研究了脱水与复水过程中湿地匍灯藓的渗透调节能力、抗氧化保护系统以及DNA损伤与修复的影响。结果表明:(1)在脱水过程中,游离脯氨酸、可溶性糖、还原性糖含量均出现明显增加,脱水12h时达到最大;细胞膜透性上升;超氧化物歧化酶、过氧化氢酶和过氧化物酶活性均持续上升,抗坏血酸含量则逐渐降低;DNA损伤明显加大,脱水24h时DNA已全部降解为低分子量片段。(2)在复水过程中,以上各项指标变化趋势与脱水处理时刚好相反。表明湿地匍灯藓具备复苏植物的典型特征,在含水量变化(变水)过程中具有较强的抗干(旱)性,其抗逆性主要体现为修复能力。  相似文献   

8.
脱水导致的胞内溶质变化与植物耐干性的获得   总被引:2,自引:0,他引:2  
植物耐干性是指许多植物个体和部分植物种子能在含水量极低的条件下存活,在回水的过程中迅速启动修复机制,细胞经重新水合修复所受损伤的能力。在脱水过程中,植物会合成和积累某些小分子物质、碳水化合物和特殊的蛋白质;在极度脱水状态下,多组分参与的玻璃化的形成和两性物质的重新分配、耐干性植物中特有的抗氧化机制都是植物获得耐干性的重要条件。复苏植物(resurrection plant)和部分被子植物种子是当前研究植物耐干性的模式材料。  相似文献   

9.
复苏植物是研究植物耐脱水机制的特殊模式植物和宝贵的耐旱基因资源植物。以复苏植物旋蒴苣苔(Boea hygrometrica) 为材料研究其在脱水和复水过程中棉子糖系列寡糖含量的变化, 并克隆了旋蒴苣苔棉子糖合酶基因BhRFS。荧光定量PCR检测表明, BhRFS受干旱、低温(4°C)、高盐(200 mmol·L–1NaCl)和ABA(100 μmol·L–1)诱导表达上调, 而高温(37°C)抑制其表达, H2O2(200 μmol·L–1)处理对其没有影响。研究结果表明, BhRFS可能参与了多种非生物逆境胁迫抗性反应, 并受到ABA依赖的信号通路调控。  相似文献   

10.
冷冻致亚致死损伤的金黄色葡萄球菌修复机制   总被引:1,自引:0,他引:1  
摘要:【目的】研究冷冻致亚致死损伤的金黄色葡萄球菌修复过程中的细胞修复机制。【方法】本文以冷冻致亚致死损伤的金黄色葡萄球菌(Staphylococcus aureus)为研究对象,探讨了不同修复时间细胞的修复情况;利用透射电子显微镜观察修复启动过程中超微结构的变化;通过实时荧光定量PCR(Real-time PCR)方法测定了修复过程中转录弱化子(msrR)、铁离子ABC转运ATP结合蛋白(fhuC)、细胞色素b(cytB)基因表达量的变化,通过紫外分光光度法测定细胞外泄漏物含量、细胞活性氧(ROS)和超氧化物歧化酶( SOD)活性。【结果】修复3 h后,99%以上冷冻致亚致死损伤的金黄色葡萄球菌完成修复,修复后细胞对高盐胁迫抗性恢复。Real-time PCR分析结果表明,msrR和fhuC基因表达量显著下调,而cytB表达量显著上调。修复过程中冷冻致亚致死损伤的金黄色葡萄球菌细胞表面超微结构变化比较明显,细胞表面从光滑透明变得致密结实,细胞内紫外吸收物质泄漏速度也在逐渐变慢,同时细胞中的ROS含量降低,SOD酶活性减弱。【结论】冷冻致亚致死损伤的金黄色葡萄球菌修复过程中,可能是通过细胞膜完整性的修复,细胞恢复对高盐胁迫的抵抗能力;通过基因调控降低细胞内ROS的含量,降低活性氧(O-2)对细胞的毒害作用。同时通过产能代谢相关基因(cytB)的调控为细胞提供修复所需要的能量,最终冷冻致亚致死损伤的细胞得到修复。  相似文献   

11.
Desiccation tolerance in vegetative plant cells   总被引:17,自引:0,他引:17  
  相似文献   

12.
The evolution of vegetative desiccation tolerance in land plants   总被引:16,自引:0,他引:16  
Oliver  Melvin J.  Tuba  Zoltán  Mishler  Brent D. 《Plant Ecology》2000,151(1):85-100
Vegetative desiccation tolerance is a widespread but uncommon occurrence in the plant kingdom generally. The majority of vegetative desiccation-tolerant plants are found in the less complex clades that constitute the algae, lichens and bryophytes. However, within the larger and more complex groups of vascular land plants there are some 60 to 70 species of ferns and fern allies, and approximately 60 species of angiosperms that exhibit some degree of vegetative desiccation tolerance. In this report we analyze the evidence for the differing mechanisms of desiccation tolerance in different plants, including differences in cellular protection and cellular repair, and couple this evidence with a phylogenetic framework to generate a working hypothesis as to the evolution of desiccation tolerance in land plants. We hypothesize that the initial evolution of vegetative desiccation tolerance was a crucial step in the colonization of the land by primitive plants from an origin in fresh water. The primitive mechanism of tolerance probably involved constitutive cellular protection coupled with active cellular repair, similar to that described for modern-day desiccation-tolerant bryophytes. As plant species evolved, vegetative desiccation tolerance was lost as increased growth rates, structural and morphological complexity, and mechanisms that conserve water within the plant and maintain efficient carbon fixation were selected for. Genes that had evolved for cellular protection and repair were, in all likelihood, recruited for different but related processes such as response to water stress and the desiccation tolerance of reproductive propagules. We thus hypothesize that the mechanism of desiccation tolerance exhibited in seeds, a developmentally induced cellular protection system, evolved from the primitive form of vegetative desiccation tolerance. Once established in seeds, this system became available for induction in vegetative tissues by environmental cues related to drying. The more recent, modified vegetative desiccation tolerance mechanism in angiosperms evolved from that programmed into seed development as species spread into very arid environments. Most recently, certain desiccation-tolerant monocots evolved the strategy of poikilochlorophylly to survive and compete in marginal habitats with variability in water availability.  相似文献   

13.
We examined short- and long-term desiccation tolerance of 31 strains of thermophilic and hyperthermophilic Archaea and thermophilic phylogenetically deep-branching Bacteria. Seventeen organisms showed a significant high ability to withstand desiccation. The desiccation tolerance turned out to be species-specific and was influenced by several parameters such as storage temperature, pH, substrate or presence of oxygen. All organisms showed a higher survival rate at low storage temperatures (−20°C or below) than at room temperature. Anaerobic and microaerophilic strains are influenced negatively in their survival by the presence of oxygen during desiccation and storage. The desiccation tolerance of Sulfolobales strains is co-influenced by the pH and the substrate of the pre-culture. The distribution of desiccation tolerance in the phylogenetic tree of life is not domain specific. Surprisingly, there are dramatic differences in desiccation tolerance among organisms from the same order and even from closely related strains of the same genus. Our results show that tolerance of vegetative cells to desiccation is a common phenomenon of thermophilic and hyperthermophilic microorganisms although they originated from quite different non-arid habitats like boiling acidic springs or black smoker chimneys.  相似文献   

14.
15.
Trehalose considerably increased the tolerance of Escherichia coli to air drying, whether added as an excipient prior to drying or accumulated as a compatible solute in response to osmotic stress. The protective effect of exogenously added trehalose was concentration dependent, up to a threshold value of 350 mM. However, trehalose alone cannot explain the intrinsically greater desiccation tolerance of stationary compared to exponential phase E. coli cells, although their tolerance was also enhanced by exogenous or endogenously accumulated trehalose. In contrast, glycine betaine whether added as an excipient or accumulated intracellularly had no influence on desiccation tolerance. These data demonstrate that the protection provided by compatible solutes to cells subjected to desiccation differs from that during osmotic stress, due to the much greater reduction in available cell water. The protective effects of trehalose during desiccation appear to be due to its stabilising influence on membrane structure, its chemically inert nature and the propensity of trehalose solutions to form glasses upon drying, properties which are not shared by glycine betaine.  相似文献   

16.
The majority of terrestrial plants are unable to survive in very dry environments. However, a small group of plants, called ‘resurrection’ plants, are extremely desiccation-tolerant and are capable of losing more than 90% of the cellular water in vegetative tissues. Resurrection plants can remain dried in an anabiotic state for several years and, upon rehydration, are able to resume normal growth and metabolism within 24 h. Vegetative desiccation tolerance is thought to have evolved independently several times within the plant kingdom from mechanisms that allow reproductive organs to survive air-dryness. Resurrection plants synthesise a range of compounds, either constitutively or in response to dehydration, that protect various components of the cell wall from damage during desiccation and/or rehydration. These include sugars and late embryogenesis abundant (LEA) proteins that are thought to act as osmoprotectants, and free radical-scavenging enzymes that limit the oxidative damage during dehydration. Changes in the cell wall composition during drying reduce the mechanical damage caused by the loss of water and the subsequent shrinking of the vacuole. These include an increase in expansin or cell wall-loosening activity during desiccation that enhances wall flexibility and promotes folding.  相似文献   

17.
Bryophytes are a non-monophyletic group of three major lineages (liverworts, hornworts, and mosses) that descend from the earliest branching events in the phylogeny of land plants. We postulate that desiccation tolerance is a primitive trait, thus mechanisms by which the first land plants achieved tolerance may be reflected in how extant desiccation-tolerant bryophytes survive drying. Evidence is consistent with extant bryophytes employing a tolerance strategy of constitutive cellular protection coupled with induction of a recovery/repair mechanism upon rehydration. Cellular structures appear intact in the desiccated state but are disrupted by rapid uptake of water upon rehydration, but cellular integrity is rapidly regained. The photosynthetic machinery appears to be protected such that photosynthetic activity recovers quickly. Gene expression responds following rehydration and not during drying. Gene expression is translationally controlled and results in the synthesis of a number of proteins, collectively called rehydrins. Some prominent rehydrins are similar to Late Embryogenesis Abundant (LEA) proteins, classically ascribed a protection function during desiccation. The role of LEA proteins in a rehydrating system is unknown but data indicates a function in stabilization and reconstitution of membranes. Phylogenetic studies using a Tortula ruralis LEA-like rehydrin led to a re-examination of the evolution of desiccation tolerance. A new phylogenetic analysis suggests that: (i) the basic mechanisms of tolerance seen in modern day bryophytes have changed little from the earliest manifestations of desiccation tolerance in land plants, and (ii) vegetative desiccation tolerance in the early land plants may have evolved from a mechanism present first in spores.  相似文献   

18.
玉米种子萌发能力和耐脱水能力的形成   总被引:7,自引:0,他引:7  
以玉米品种“粤单9117”为材料,研究了种子发育过程中萌发能力和耐脱水能力的获得。玉米种子的生理成熟期约为43DAP(授粉后天数)。胚萌发能力的获得是在14-21DAP、耐脱水能力的获得出现在25-28DAP。胚的耐脱水能力在28DAP后仍不断得到加强。耐脱水能力的获得与细胞膜的发育及受保护的程度密切相关。脱水有利于不同发育时期的胚和种子的萌发。  相似文献   

19.
Gene induction by desiccation stress in human cell cultures   总被引:1,自引:0,他引:1  
Huang Z  Tunnacliffe A 《FEBS letters》2005,579(22):4973-4977
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号