首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
猪瘟DNA疫苗在猪体及环境的生物安全性研究   总被引:1,自引:0,他引:1  
DNA疫苗生物安全性是其走向临床所须解决的关键问题之一。以猪瘟DNA疫苗为研究对象 ,探讨了其两个方面的生物安全性问题。一方面 ,将两种不同的猪瘟DNA疫苗质粒免疫猪后 ,利用PCR技术分析了其与猪细胞基因组整合的可能性 ,结果在灵敏度为 30拷贝的检测条件下 ,未发现猪瘟DNA疫苗整合到细胞基因组 ;另一方面 ,以PCR技术检测了免疫现场环境样品 ,以分析猪瘟DNA疫苗上的E2基因、CMV启动子基因和抗性基因是否在环境细菌中发生转移和扩散。结果未发现DNA疫苗转化环境细菌的直接证据。因此认为DNA疫苗对猪体和环境是安全的。  相似文献   

2.
反向遗传学技术在猪瘟病毒研究中的应用   总被引:1,自引:0,他引:1  
刘大飞  孙元  仇华吉 《生物工程学报》2009,25(10):1441-1448
猪瘟目前在许多国家流行并对养猪业造成巨大损失。虽然常规疫苗(如中国猪瘟兔化弱毒疫苗,即C株)在猪瘟防控中发挥巨大作用,但近年来在猪瘟防控中出现的新情况,如非典型感染、持续性感染及免疫失败等;同时目前世界上许多国家正开展的猪瘟扑灭计划使得弱毒疫苗的应用受到很大限制。因此,加强猪瘟病毒在致病机理、传播机制等方面的研究以及加快新型猪瘟疫苗的开发是当务之急。近年来,反向遗传学技术的发展为猪瘟病毒基因功能研究和疫苗制备方面开辟了新思路。以下回顾了反向遗传操作技术在猪瘟病毒基因功能研究与标记疫苗株构建方面的研究进展,同时提出了该领域目前面临的问题,并对其未来发展方向进行了展望。  相似文献   

3.
猪瘟DNA疫苗制备工艺研究   总被引:7,自引:1,他引:6  
猪瘟DNA疫苗制备工艺的建立是其走向产业化 ,从而在猪瘟防制中发挥作用所需解决的关键问题之一。以猪瘟DNA疫苗质粒pVAXE2IL2转化大肠杆菌后 ,转入发酵罐发酵培养。将菌体悬浮裂解和中和后 ,经澄清和浓缩处理 ,上阴离子交换色谱和体积排阻色谱进行纯化 ,首次提纯出符合药学规格的猪瘟DNA疫苗 ,且整个工艺回收率达 64.53% ,从而表明所建立的工艺为猪瘟DNA疫苗规模化生产奠定了技术基础。  相似文献   

4.
本实验室先前分别将构建的猪瘟病毒E2基因重组腺病毒疫苗(rAdV-E2)和猪瘟甲病毒复制子载体DNA疫苗(pSFV1CS-E2)在猪体上进行了免疫效力评价,结果显示,rAdV-E2免疫组所有猪虽然在加强免疫后产生了比较高的猪瘟特异性中和抗体,但攻毒后个别猪表现短期体温升高和轻微病变;而pSFV1CS-E2免疫组猪只虽然在攻毒后得到了保护,但产生的抗体水平较低。为了增强猪瘟甲病毒复制子载体疫苗和猪瘟重组腺病毒活载体疫苗的免疫效果,本研究应用了复制子载体DNA疫苗初免和重组腺病毒疫苗加强免疫的初免-加强(Prime-boost)免疫策略,并在猪体上进行了评价。结果显示,所有免疫猪均产生了高水平的猪瘟特异性的中和抗体,用猪瘟强毒攻击后,pSFV1CS-E2初免组所有猪(n=5)均没有出现任何猪瘟的临床症状和病理变化,攻毒后在猪血液中也没有检测到猪瘟病毒RNA,而重组腺病毒初免组(n=5)有一头猪出现短期发热和病毒血症及轻微病理变化。这表明初免-加强免疫策略能显著提高重组疫苗的免疫效力。  相似文献   

5.
抗肿瘤DNA疫苗的研究进展   总被引:1,自引:0,他引:1  
抗肿瘤DNA疫苗是一种全新的肿瘤疫苗,在肿瘤防治中发挥着越来越重要的作用。大量研究表明,多种类型的抗肿瘤DNA疫苗都具有一定程度的抗肿瘤效应,有着良好的应用前景。目前,构建新型高效的抗肿瘤DNA疫苗已经成为肿瘤研究的热点。  相似文献   

6.
此前已构建了基于SemlikiForest病毒(SemlikiForestvirus,SFV)复制子载体的表达猪瘟病毒(classicalswinefevervirus,CSFV)E2基因的新型猪瘟DNA疫苗pFV1CS-E2,通过动物试验证实,该疫苗以600μg/头的剂量免疫3次,免疫猪能抵抗致死剂量猪瘟强毒的攻击。为进一步评价该疫苗在较低的免疫剂量和较少的免疫次数情况下的免疫效力,将DNA疫苗pSFV1CS-E2和空载体pSFV1CS按100μg/头的剂量,接种猪只2次,然后用致死剂量的猪瘟强毒石门株进行攻击。结果表明,pSFV1CS-E2免疫组(n=5)所有免疫猪在加强免疫后均产生了猪瘟特异性中和抗体,攻毒后所有猪只抗体迅速升高,除了短期体温升高外,未出现任何其它临床症状,部分猪出现短期轻微病毒血症,个别猪的部分脏器出现轻微病变;而空载体免疫组(n=3)猪只在攻毒前一直没有检出特异性抗体,攻毒后全都出现典型的猪瘟临床症状和严重的病毒血症,有2头猪分别于攻毒后第10和11d死亡,剖检时可见典型猪瘟病理变化。结果表明,基于甲病毒复制子载体的猪瘟DNA疫苗有望成为具有开发价值的猪瘟标记疫苗。  相似文献   

7.
猪瘟(Classical swine fever,CSF)是猪的一种急性、热性和致死性传染病。该病流行范围很广,而且致死率极高,给世界养猪业造成严重危害。目前,猪瘟流行地区或国家仍然采用接种弱毒疫苗的方法作为预防猪瘟的主要策略,但接种弱毒疫苗的传统预防控制方法无法区别猪瘟疫苗免疫抗体和野毒感染抗体。为了净化、消灭猪瘟,新型标记疫苗的研究已迫在眉睫。近些年,陆续有国内外研究者应用分子生物学和基因工程方法,对猪瘟野毒株或弱毒株进行基因修饰构建出新毒株,其中以Erns和E2为基础构建新毒株的方法占据着重要地位。部分候选疫苗具有较好的免疫效果,可用于区分免疫和自然感染动物,而且有望作为新一代疫苗来替代传统弱毒疫苗。  相似文献   

8.
此前已构建了基于Semliki Forest病毒(Semliki Forest virus,SFV)复制子载体的表达猪瘟病毒(classical swine fever virus,CSFV)E2基因的新型猪瘟DNA疫苗pFV1CS-E2,通过动物试验证实,该疫苗以600μg/头的剂量免疫3次,免疫猪能抵抗致死剂量猪瘟强毒的攻击。为进一步评价该疫苗在较低的免疫剂量和较少的免疫次数情况下的免疫效力,将DNA疫苗pSFV1CS-E2和空载体pSFV1CS按100μg/头的剂量,接种猪只2次,然后用致死剂量的猪瘟强毒石门株进行攻击。结果表明,pSFV1CS-E2免疫组(n=5)所有免疫猪在加强免疫后均产生了猪瘟特异性中和抗体,攻毒后所有猪只抗体迅速升高,除了短期体温升高外,未出现任何其它临床症状,部分猪出现短期轻微病毒血症,个别猪的部分脏器出现轻微病变;而空载体免疫组(n=3)猪只在攻毒前一直没有检出特异性抗体,攻毒后全都出现典型的猪瘟临床症状和严重的病毒血症,有2头猪分别于攻毒后第10和11d死亡,剖检时可见典型猪瘟病理变化。结果表明,基于甲病毒复制子载体的猪瘟DNA疫苗有望成为具有开发价值的猪瘟标记疫苗。  相似文献   

9.
为建立并获取更有效的乙肝疫苗,本实验通过将所构建的HBV RNA复制子疫苗和DNA疫苗分别免疫小鼠,检测细胞免疫与体液免疫的效果.结果表明,以pSFV为基础构建的疫苗载体免疫小鼠后采集的血清中抗体效价不随免疫剂量的增加而提高,在较低剂量免疫的时候,RNA复制子疫苗所产生的抗体效价优于DNA疫苗.并且RNA复制子疫苗在以较低剂量免疫后脾细胞CTL活性高于DNA疫苗.本研究证明HBV RNA疫苗比DNA疫苗表达效果更好,安全性更高,更具有应用前景.  相似文献   

10.
乙肝DNA疫苗的研究进展   总被引:1,自引:0,他引:1  
核酸疫苗包括DNA疫苗和RNA疫苗,目前研究以DNA疫苗为主。乙肝DNA疫苗不仅能诱导机体细胞介导的体液免疫反应,而且还能诱导机体细胞介导的特异性细胞免疫反应,CTL活性增强,在乙型肝炎预防和治疗中具有广阔的应用前景。本文就近几年有关乙肝DNA疫苗的进展作了综述。  相似文献   

11.
Plasmid DNA vaccines   总被引:4,自引:0,他引:4  
DNA vaccination is a novel approach for inducing an immune response. Purified plasmid DNA containing an antigen’s coding sequences and the necessary regulatory elements to expres them is introduced into the tissue via intramuscular injection or particle bombardment. Once the DNA reaches the tissue, the antigen is expressed in enough quantity to induce a potent and specific immune response and to confer protection against further infections. The effectiveness of DNA vaccines against viruses, parasites, and cancer cells has been demonstrated in numerous animal models. This new approach comes as an aid for the prevention of infectious diseases for which the conventional vaccines have failed. DNA vaccine research is providing new insights into some of the basic immunological mechanisms of vaccination such as antigen presentation, the role of effector cells, and immunoregulatory factors. In addition, DNA vaccines may enable us to manipulate the immune system in situations where the response to agents is inappropriate or ineffective. The study of the potential deleterious effects of DNA vaccines is furthering our knowledge regarding the relationship between bacterial DNA and the immune system, as well as its potential application for the study of neonatal tolerance and autoimmunity.  相似文献   

12.
RNA复制子疫苗研究进展   总被引:1,自引:0,他引:1  
最近兴起的RNA复制子疫苗,利用源自病毒的能够自主复制的RNA,其结构蛋白基因由外源抗原基因取代,保留了非结构蛋白(RNA复制酶)基因。RNA复制酶可使RNA载体在细胞质中高水平复制,并实现外源抗原基因的高水平表达,可同时诱导细胞免疫和体液免疫应答。大量双链RNA可诱导被感染细胞凋亡,宿主细胞的凋亡有利于免疫系统识别外源抗原。RNA复制子疫苗克服了传统疫苗和普通DNA疫苗存在的缺点,具有抗原表达效率高、安全性好、应用范围广等优点,因而被视为一种发展前景很好的疫苗形式。目前已对一些疾病模型基于复制子的治疗性和预防性疫苗进行了研究(涉及的对象包括病毒、肿瘤以及细菌毒素等),并对某些不足之处进行了改进。  相似文献   

13.
DNA vaccines against botulinum neurotoxin (BoNTs) induce protective humoral immune responses in mouse model, but when compared with conventional vaccines such as toxoid and protein vaccines, DNA vaccines often induce lower antibody level and protective efficacy and are still necessary to increase their potency. In this study we evaluated the potency of aluminum phosphate as an adjuvant of DNA vaccines to enhance antibody responses and protective efficacy against botulinum neurotoxin serotypes A and B in Balb/c mice. The administration of these individual and bivalent plasmid DNA replicon vaccines against botulinum neurotoxin serotypes A and B in the presence of aluminum phosphate improved both antibody responses and protective efficacy. Furthermore, formulation of conventional plasmid DNA vaccines encoding the same Hc domains of botulinum neurotoxin serotypes A and B with aluminum phosphate adjuvant increased both antibody responses and protective efficacy. These results indicate aluminum phosphate is an effective adjuvant for these two types of DNA vaccines (i.e., plasmid DNA replicon vaccines and conventional plasmid DNA vaccines), and the vaccine formulation described here may be an excellent candidate for further vaccine development against botulinum neurotoxins.  相似文献   

14.
Conventional treatment approaches for malignant tumors are highly invasive and sometimes have only a palliative effect. Therefore, there is an increasing demand to develop novel, more efficient treatment options. Increased efforts have been made to apply immunomodulatory strategies in antitumor treatment. In recent years, immunizations with naked plasmid DNA encoding tumor-associated antigens have revealed a number of advantages. By DNA vaccination, antigen-specific cellular as well as humoral immune responses can be generated. The induction of specific immune responses directed against antigens expressed in tumor cells and displayed e.g., by MHC class I complexes can inhibit tumor growth and lead to tumor rejection. The improvement of vaccine efficacy has become a critical goal in the development of DNA vaccination as antitumor therapy. The use of different DNA delivery techniques and coadministration of adjuvants including cytokine genes may influence the pattern of specific immune responses induced. This brief review describes recent developments to optimize DNA vaccination against tumor-associated antigens. The prerequisite for a successful antitumor vaccination is breaking tolerance to tumor-associated antigens, which represent "self-antigens." Currently, immunization with xenogeneic DNA to induce immune responses against self-molecules is under intensive investigation. Tumor cells can develop immune escape mechanisms by generation of antigen loss variants, therefore, it may be necessary that DNA vaccines contain more than one tumor antigen. Polyimmunization with a mixture of tumor-associated antigen genes may have a synergistic effect in tumor treatment. The identification of tumor antigens that may serve as targets for DNA immunization has proceeded rapidly. Preclinical studies in animal models are promising that DNA immunization is a potent strategy for mediating antitumor effects in vivo. Thus, DNA vaccines may offer a novel treatment for tumor patients. DNA vaccines may also be useful in the prevention of tumors with genetic predisposition. By DNA vaccination preventing infections, the development of viral-induced tumors may be avoided.  相似文献   

15.
基因疫苗技术自从20世纪90年代问世以来被迅速应用到传染病、免疫缺陷、肿瘤等重大疾病的预防和治疗的研究中,有一部分已经进入临床试验阶段.肿瘤基因疫苗可以打破免疫耐受,增强免疫原性,诱导机体产生针对肿瘤的体液和细胞反应,既有预防又有治疗肿瘤的作用.能够防治肿瘤的基因疫苗发展迅猛,主要包括与肿瘤相关抗原(TAAs)有关的全长、表位、独特型(Id)和融合DNA疫苗,能够自主复制的RNA疫苗,与树突细胞(DCs)相关的肿瘤基因疫苗等.肿瘤基因疫苗的分子作用机制及其存在的弊端也日益成为关注的问题.  相似文献   

16.
DNA vaccination has been widely explored to develop new, alternative and efficient vaccines for cancer immunotherapy. DNA vaccines offer several benefits such as specific targeting, use of multiple genes to enhance immunity and reduced risk compared to conventional vaccines. Rapid developments in molecular biology and immunoinformatics enable rational design approaches. These technologies allow construction of DNA vaccines encoding selected tumor antigens together with molecules to direct and amplify the desired effector pathways, as well as highly targeted vaccines aimed at specific epitopes. Reliable predictions of immunogenic T cell epitope peptides are crucial for rational vaccine design and represent a key problem in immunoinformatics. Computational approaches have been developed to facilitate the process of epitope detection and show potential applications to the immunotherapeutic treatment of cancer. In this review a number of different epitope prediction methods are briefly illustrated and effective use of these resources to support experimental studies is described. Epitope-driven vaccine design employs these bioinformatics algorithms to identify potential targets of vaccines against cancer. In this paper the selection of T cell epitopes to develop epitope-based vaccines, the need for CD4(+) T cell help for improved vaccines and the assessment of vaccine performance against tumor are reviewed. We focused on two applications, namely prediction of novel T cell epitopes and epitope enhancement by sequence modification, and combined rationale design with bioinformatics for creation of new synthetic mini-genes. This review describes the development of epitope-based DNA vaccines and their antitumor effects in preclinical research against B-cell lymphoma, corroborating the usefulness of this platform as a potential tool for cancer therapy. Achievements in the field of DNA vaccines allow to overcome hurdles to clinical translation. In a scenario where the vaccine industry is rapidly changing from a mostly empirical approach to a rational design approach, these new technologies promise to discover and develop high-value vaccines, creating a new opportunity for future markets.  相似文献   

17.
18.
Recombinant DNA vaccines are able to induce strong CD8+ T cell mediated immunity and have become increasingly attractive for the prevention and treatment of infectious diseases and cancer. Dendritic cells (DC), which critically control cellular immune responses, have been transduced with antigen ex vivo and used as 'nature's adjuvant' to enhance vaccine efficacy. The impact of the application route on the in vivo distribution of antigen and the stimulation of CD8+ T cells have been subjects of considerable debate. Here we report the construction of vectors expressing a fusion protein between EGFP, the H2-K(b)-binding peptide OVA(aa257-264) and green click beetle luciferase as a model antigen which allows for simultaneous quantitative assessment of antigen expression using fluorescence and bioluminescence imaging in correlation with CD8+ T cell stimulation in vivo. We applied this construct to evaluate DNA vaccination with recombinant adenoviral vectors, assess the impact of using cultured DC for vaccine delivery and investigate different application routes. Antigen expression was non-invasively followed in vivo by visualizing bioluminescence with an ultrasensitive CCD camera. CD8+ T cell stimulation was detected with H2-K(b)-OVA(aa257-264) tetramers. We found that intravenous injection of adenovirus-transduced DC stimulated the strongest OVA(aa257-264)-specific cytotoxic T-lymphocyte (CTL) responses although it delivered two orders of magnitude less antigen in vivo when compared to direct injection of recombinant adenovirus. We believe that our experimental approach has the potential to facilitate translational development of improved genetic immunization strategies targeting DC directly in vivo.  相似文献   

19.
G Ge  S Wang  Y Han  C Zhang  S Lu  Z Huang 《PloS one》2012,7(7):e41573
Although the use of recombinant hepatitis B virus surface (HBsAg) protein vaccine has successfully reduced global hepatitis B infection, there are still a number of vaccine recipients who do not develop detectable antibody responses. Various novel vaccination approaches, including DNA vaccines, have been used to further improve the coverage of vaccine protection. Our previous studies demonstrated that HBsAg-based DNA vaccines could induce both humoral and CMI responses in experimental animal models. However, one form of the the HBsAg antigen, the large S antigen (HBs-L), expressed by DNA vaccine, was not sufficiently immunogenic in eliciting antibody responses. In the current study, we produced a modified large S antigen DNA vaccine, HBs-L(T), which has a truncated N-terminal sequence in the pre-S1 region. Compared to the original HBs-L DNA vaccine, the HBs-L(T) DNA vaccine improved secretion in cultured mammalian cells and generated significantly enhanced HBsAg-specific antibody and B cell responses. Furthermore, this improved HBsL DNA vaccine, along with other HBsAg-expressing DNA vaccines, was able to maintain predominantly Th1 type antibody responses while recombinant HBsAg protein vaccines produced in either yeast or CHO cells elicited mostly Th2 type antibody responses. Our data indicate that HBsAg DNA vaccines with improved immunogenicity offer a useful alternative choice to recombinant protein-based HBV vaccines, particularly for therapeutic purposes against chronic hepatitis infection where immune tolerance led to poor antibody responses to S antigens.  相似文献   

20.
BACKGROUND: DNA vaccines have been shown to be an effective approach to induce antigen-specific cellular and humoral immunity. However, the lower immune intensity in clinical trials limits the application of DNA vaccine. Here we intend to develop a new DNA vaccine based on prostate stem-cell antigen (PSCA), which has been suggested as a potential target for prostate cancer therapy, and enhance the DNA vaccine potency with heat shock proteins (HSPs) as adjuvant. METHODS: A series of DNA plasmids encoding human PSCA, human HSP70 and their conjugates was constructed and injected into male mice intramuscularly (i.m.). To evaluate the immune responses and therapeutic efficacy of these plasmids, major histocompatibility complex (MHC)-restricted PSCA and HSP70-specific epitopes were predicted and a mouse model with a human PSCA-expressing tumor was constructed. RESULTS: The result showed that mice vaccinated with PSCA-HSP plasmids generated the strongest PSCA-specific CD8+ T-cell immune response, but the CD4+ TH1 and TH2 cell immune responses were similar with those vaccinated with other HSP-adjuvant PSCA plasmids or only PSCA DNA. The immunity of HSP70 was also observed and the mice i.m. injected with PSCA+ HSP mixed plasmids generated the lowest anti-HSP antibodies. Furthermore, these vaccinations inhibited the growth of PSCA-expressing tumors and prolonged mouse survival. CONCLUSIONS: These observations emphasize and extend the potential of the human HSP70 gene as adjuvant for DNA vaccines, and the vaccine based on PSCA and HSP70 is of potential value for treating prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号