首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   389篇
  免费   27篇
  2023年   2篇
  2022年   3篇
  2021年   24篇
  2020年   10篇
  2019年   15篇
  2018年   13篇
  2017年   9篇
  2016年   22篇
  2015年   27篇
  2014年   27篇
  2013年   37篇
  2012年   26篇
  2011年   24篇
  2010年   20篇
  2009年   21篇
  2008年   25篇
  2007年   16篇
  2006年   21篇
  2005年   19篇
  2004年   8篇
  2003年   15篇
  2002年   13篇
  2001年   5篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1975年   1篇
排序方式: 共有416条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
Rational discovery of novel immunodiagnostic and vaccine candidate antigens to control bovine tuberculosis (bTB) requires knowledge of disease immunopathogenesis. However, there remains a paucity of information on the Mycobacterium bovis-host immune interactions during the natural infection. Analysis of 247 naturally PPD+ M. bovis-infected cattle revealed that 92% (n = 228) of these animals were found to display no clinical signs, but presented severe as well as disseminated bTB-lesions at post-mortem examination. Moreover, dissemination of bTB-lesions positively correlated with both pathology severity score (Spearman r = 0.48; p<0.0001) and viable tissue bacterial loads (Spearman r = 0.58; p = 0.0001). Additionally, granuloma encapsulation negatively correlated with M. bovis growth as well as pathology severity, suggesting that encapsulation is an effective mechanism to control bacterial proliferation during natural infection. Moreover, multinucleated giant cell numbers were found to negatively correlate with bacterial counts (Spearman r = 0.25; p = 0.03) in lung granulomas. In contrast, neutrophil numbers in the granuloma were associated with increased M. bovis proliferation (Spearman r = 0.27; p = 0.021). Together, our findings suggest that encapsulation and multinucleated giant cells control M. bovis viability, whereas neutrophils may serve as a cellular biomarker of bacterial proliferation during natural infection. These data integrate host granuloma responses with mycobacterial dissemination and could provide useful immunopathological-based biomarkers of disease severity in natural infection with M. bovis, an important cattle pathogen.  相似文献   
5.
Loss of NKX3.1 is an early and consistent event in prostate cancer and is associated with increased proliferation of prostate epithelial cells and poor prognosis. NKX3.1 stability is regulated post‐translationally through phosphorylation at multiple sites by several protein kinases. Here, we report the paradoxical stabilization of the prostate‐specific tumor suppressor NKX3.1 by the oncogenic protein kinase Pim‐1 in prostate cancer cells. Pharmacologic Pim‐1 inhibition using the small molecule inhibitor CX‐6258 decreased steady state levels and half‐life of NKX3.1 protein but mRNA was not affected. This effect was reversed by inhibition of the 26S‐proteasome, demonstrating that Pim‐1 protects NKX3.1 from proteasome‐mediated degradation. Mass spectrometric analyses revealed Thr89, Ser185, Ser186, Ser195, and Ser196 as Pim‐1 phospho‐acceptor sites on NKX3.1. Through mutational analysis, we determined that NKX3.1 phosphorylation at Ser185, Ser186, and within the N‐terminal PEST domain is essential for Pim‐1‐mediated stabilization. Further, we also identified Lys182 as a critical residue for NKX3.1 stabilization by Pim‐1. Pim‐1‐mediated NKX3.1 stabilization may be important in maintaining normal cellular homeostasis in normal prostate epithelial cells, and may maintain basal NKX3.1 protein levels in prostate cancer cells. J. Cell. Biochem. 114: 1050–1057, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
6.
Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world''s oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms.  相似文献   
7.
8.
BackgroundCandida albicans is the main agent that causes vulvovaginal candidiasis. Resistance among isolates to azole antifungal agents has been reported.AimsDue to the well-known antifungal potential of curcumin, the purpose of this work was to evaluate the in vitro anticandidal activity of curcumin and its effect in the treatment of experimental vulvovaginal candidiasis.MethodsThe anticandidal activity of curcumin was investigated against eight Candida strains by the broth microdilution assay, and its mechanism of action was evaluated by testing the binding to ergosterol. Then, the effect of curcumin in the treatment of vulvovaginal candidiasis was evaluated in an immunosuppressed, estrogen treated rat model.ResultsCurcumin showed minimum inhibitory concentration values of 125–1000 μg/ml, and the best result was observed against Candida glabrata. The compound was shown to be able to bind to the ergosterol present in the membrane, event that may be the mechanism of action. In addition, in the in vivo model of vulvovaginal candidiasis with C. albicans, treatments reduced the vaginal fungal burden in infected rats after seven days of treatment with different doses.ConclusionsCurcumin could be considered a promising effective antifungal agent in the treatment of vulvovaginal candidiasis.  相似文献   
9.
Human population density within 100 km of the sea is approximately three times higher than the global average. People in this zone are concentrated in coastal cities that are hubs for transport and trade – which transform the marine environment. Here, we review the impacts of three interacting drivers of marine urbanization (resource exploitation, pollution pathways and ocean sprawl) and discuss key characteristics that are symptomatic of urban marine ecosystems. Current evidence suggests these systems comprise spatially heterogeneous mosaics with respect to artificial structures, pollutants and community composition, while also undergoing biotic homogenization over time. Urban marine ecosystem dynamics are often influenced by several commonly observed patterns and processes, including the loss of foundation species, changes in biodiversity and productivity, and the establishment of ruderal species, synanthropes and novel assemblages. We discuss potential urban acclimatization and adaptation among marine taxa, interactive effects of climate change and marine urbanization, and ecological engineering strategies for enhancing urban marine ecosystems. By assimilating research findings across disparate disciplines, we aim to build the groundwork for urban marine ecology – a nascent field; we also discuss research challenges and future directions for this new field as it advances and matures. Ultimately, all sides of coastal city design: architecture, urban planning and civil and municipal engineering, will need to prioritize the marine environment if negative effects of urbanization are to be minimized. In particular, planning strategies that account for the interactive effects of urban drivers and accommodate complex system dynamics could enhance the ecological and human functions of future urban marine ecosystems.  相似文献   
10.
Malic enzymes catalyze the oxidative decarboxylation of l-malate to yield pyruvate, CO(2), and NAD(P)H in the presence of a bivalent metal ion. In plants, different isoforms of the NADP-malic enzyme (NADP-ME) are involved in a wide range of metabolic pathways. The C(4)-specific NADP-ME has evolved from C(3)-type malic enzymes to represent a unique and specialized form of NADP-ME as indicated by its particular kinetic and regulatory properties. In the present study, the mature C(4)-specific NADP-ME of maize was expressed in Escherichia coli. The recombinant enzyme has essentially the same physicochemical properties and K(m) for the substrates as those of the naturally occurring NADP-ME previously characterized. However, the k(cat) was almost 7-fold higher, which may suggest that the previously purified enzyme from maize leaves was partially inactive. The recombinant NADP-ME also has a very low intrinsic NAD-dependent activity. Five mutants of NADP-ME at the postulated putative NADP-binding site(s) (Gsite5V, Gsite2V, A392G, A387G, and R237L) were constructed by site-directed mutagenesis and purified to homogeneity. The participation of these residues in substrate binding and/or the catalytic reaction was inferred by kinetic measurements and circular dichroism and intrinsic fluorescence spectra. The results obtained were compared with a predicted three-dimensional model of maize C(4) NADP-ME based on crystallographic studies of related animal NAD(P)-MEs. The data presented here represent the first prokaryotic expression of a plant NADP-ME and reveals valuable insight regarding the participation of the mutated amino acids in the binding of substrates and/or catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号